《R语言实战》自学笔记59-单因素协方差分析

数据准备

df <- read.table(file = "D:/Documents/R wd/df.csv", header = T, sep = ",") # 数据导入。
df # 查看数据。
df$nitrogen <- as.factor(df$nitrogen) # 将nitrogen转为因子。
##    year nitrogen variety block   v1   v2  v3  v4   v5
## 1  2020       N1       a     1 1.26 2.14 0.4 5.0 3.25
## 2  2020       N1       a     2 1.20 2.90 0.1 5.3 1.27
## 3  2020       N1       a     3 1.30 3.00 0.3 5.6 2.24
## 4  2020       N1       b     1 1.08 1.72 1.8 2.8 1.00
## 5  2020       N1       b     2 1.05 1.65 1.7 2.5 3.12
## 6  2020       N1       b     3 1.15 1.35 1.5 3.1 4.57
## 7  2020       N2       a     1 1.32 3.78 1.6 6.0 5.85
## 8  2020       N2       a     2 1.28 4.32 1.4 6.1 6.48
## 9  2020       N2       a     3 1.35 3.95 1.3 6.2 7.21
## 10 2020       N2       b     1 1.33 3.47 2.8 4.1 6.56
## 11 2020       N2       b     2 1.28 2.72 2.4 4.3 8.43
## 12 2020       N2       b     3 1.30 3.90 2.2 4.5 7.55
## 13 2021       N1       a     1 1.19 3.61 0.8 6.0 3.11
## 14 2021       N1       a     2 1.21 3.29 0.5 5.7 2.54
## 15 2021       N1       a     3 1.24 3.26 0.7 5.6 1.28
## 16 2021       N1       b     1 1.09 2.71 1.8 4.0 3.24
## 17 2021       N1       b     2 1.28 2.32 1.6 4.2 1.27
## 18 2021       N1       b     3 1.35 1.95 1.3 4.3 1.15
## 19 2021       N2       a     1 1.45 4.35 1.8 7.2 5.74
## 20 2021       N2       a     2 1.40 3.80 1.2 7.0 6.85
## 21 2021       N2       a     3 1.37 4.23 1.6 6.8 7.42
## 22 2021       N2       b     1 1.28 2.72 2.4 5.1 8.20
## 23 2021       N2       b     2 1.15 3.35 2.5 5.5 5.70
## 24 2021       N2       b     3 1.24 3.46 2.7 4.9 6.00

9.4 单因素协方差分析

单因素协方差分析(ANCOVA)扩展了单因素方差分析(ANOVA),包含一个或多个定量的
协变量。

attach(df) # 添加df为路径存储索引。
table(nitrogen) # 查看分组变量信息。
## nitrogen
## N1 N2 
## 12 12
aggregate(v1, by = list(nitrogen), FUN = mean) # 分组统计v1,按nitrogen分组。
##   Group.1      x
## 1      N1 1.2000
## 2      N2 1.3125
fit14 <- aov(v1 ~ block + nitrogen, data = df) # 协方差分析,协变量为block。
summary(fit14) # 返回分析结果。
##             Df  Sum Sq Mean Sq F value  Pr(>F)   
## block        1 0.00562 0.00562   0.753 0.39523   
## nitrogen     1 0.07594 0.07594  10.170 0.00441 **
## Residuals   21 0.15680 0.00747                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果解读:block对应的p值大于0.05,说明block与v1不相关,v1的值显著受nitrogen的影响。

由于使用了协变量,你可能想要获取调整的组均值——即去除协变量效应后的组均值。可使
用effects包中的effects()函数来计算调整的均值:

library(effects) # 调用effects包。
effect("nitrogen", fit14) # 计算调整后的均值。
## 
##  nitrogen effect
## nitrogen
##     N1     N2 
## 1.2000 1.3125
library(multcomp) # 调用multcomp包。
contrast <- rbind("N1 vs N2" = c(1,-1)) # N1和N2组的比较。
summary(glht(fit14, linfct=mcp(nitrogen=contrast))) # 返回比较结果。
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: User-defined Contrasts
## 
## 
## Fit: aov(formula = v1 ~ block + nitrogen, data = df)
## 
## Linear Hypotheses:
##               Estimate Std. Error t value Pr(>|t|)   
## N1 vs N2 == 0 -0.11250    0.03528  -3.189  0.00441 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

9.4.1 评估检验的假设条件

ANCOVA与ANOVA相同,都需要正态性和同方差性假设,ANCOVA还假定回归斜率相同。ANCOVA模型包含block*nitrogen的交互项时,可对回归斜率的同质性进行检验。交互效应若显著,则意味着block和v1间的关系依赖于nitrogen的水平。若不显著,支持了斜率相等的假设。

library(multcomp) # 调用multcomp包。
fit15 <- aov(v1 ~ block*nitrogen, data = df) # 检验斜率相等的假设。
summary(fit15) # 返回结果。
##                Df  Sum Sq Mean Sq F value  Pr(>F)   
## block           1 0.00562 0.00562   0.812 0.37830   
## nitrogen        1 0.07594 0.07594  10.960 0.00349 **
## block:nitrogen  1 0.01822 0.01822   2.630 0.12050   
## Residuals      20 0.13858 0.00693                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

9.4.2 结果可视化

library(HH) # 调用HH包。
ancova(v1 ~ block + nitrogen, data = df) # 可视化结果。
## Analysis of Variance Table
## 
## Response: v1
##           Df   Sum Sq  Mean Sq F value   Pr(>F)   
## block      1 0.005625 0.005625  0.7533 0.395229   
## nitrogen   1 0.075937 0.075937 10.1702 0.004414 **
## Residuals 21 0.156800 0.007467                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
image.png

图形解读:用block预测v1的回归线相互平行,N2下截距较N1大。

参考资料:

  1. 《R语言实战》(中文版),人民邮电出版社,2013.
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355

推荐阅读更多精彩内容