python 中文,英文做词频统计小计

作为一个爬虫工程师,词频统计还是要有所了解的,对于舆情的文本处理,统计每个词出现的次数,亦或是统计文本出现top10词,为以后简单的数据分析,做一点点准备。那么我们开始来处理吧。

import re

text = '''Which year will be the turning point for the world's most populous country in which its population experiences negative growth? Chinese demographers differ in their answers.
Experts with the Chinese Academy of Social Sciences estimate the turning point could arrive around 2028 after the population peaks to 1.44 billion, says the Green Book of Population and Labor co-released by the Chinese Academy of Social Sciences and Social Sciences Academic Press on Thursday. 
However, Huang Wenzheng, a demographics expert, told the Global Times on Friday that this estimate is too optimistic. He estimated the year 2024 or 2025 will be the threshold for population negative growth.
According to Huang, the prediction in the green book is based on the fertility rate that could remain at 1.6, which is hard to realize. 
In 2016, China's fertility rate was 1.7, but in 2017, the number of births was less, according to media reports. 
The births in 2016 and 2017 were high compared to years before, said Huang. "This was due to the introduction of two-child policy for all families [in 2016] which encouraged those who had the willingness to have a second child before the policy. So they hastened to give birth in these two years."
"But the overall trend is that people are no longer willing to have more children."
Huang elaborated that people's concept of raising children has changed. Urban people care about quality, rather than quantity. "They want to provide the best resources they have to bring up their children. This won't be possible if they have several," he said. 
With rapid urbanization, many people from rural areas come to work in the city and also follow this practice. 
"Previously people thought that having two or three children is normal. But now they are accustomed to having only one child. They find this normal," Huang said.
Yi Fuxian, a research fellow at the University of Wisconsin-Madison, holds a more pessimistic view. He told the Global Times that 2018 has seen negative growth based on his own research and analysis. 
Both Yi and Huang believe that China will abandon the two-child policy this year, putting an end to family planning, in order to stimulate births. They also warned that the sharp decline in population could have negative influence on the economy.
China has introduced a series of new measures to stimulate fertility. This year, the country's tax cuts also favor families with children. Families are able to deduct 12,000 yuan ($1,748) a year from their taxable income for children's education.
Huang said this is still far from enough. He suggested the government provide free upbringing of children aged 0 to 3 and make kindergarten education compulsory to further ease the burden of educating children. 


'''
# 词频统计
def word_count(string):
    if isinstance(string, str):
        new_text = string.strip()
        str_list = re.split('\s+', new_text)
        word_dict = {}
        for str_word in str_list:
            if str_word in word_dict.keys():#如果key存在则value加1
                word_dict[str_word] = word_dict[str_word] + 1
            else:
                word_dict[str_word] = 1
        return word_dict
    else:
        raise 'Please enter a string'


word = word_count(string=text)
#print(word)

# 词频统计按降序排序取前10
word_list = sorted(word .items(), key=lambda x: x[1], reverse=True)[0:11]
print(word_list)

image.png

如上图统计文本top10词汇出现的词语,以及次数。

以上是英文词频统计,下面我们看看中文文本怎么统计吧。
首先中文统计我们需要下载一个第三方库jieba分词。
安装 pip install jieba
处理文本分词
import jieba
content_text ='''然而,我们并没有时间去探索数据集中的数千个案例。我们应该做的则是在测试案例的典型范例上继续运行LIME,看看哪些词的占有率仍能位居前列。通过这种方法,我们可以获得像以前模型那样的单词的重要性分数,并验证模型的预测'''

def get_(string):
    b = list(jieba.cut(string, cut_all=True))
    dict = {}
    for str in b:
        if str != '' and str != '\n':#去除空白字符,和换行符。
            if str in dict.keys():
                dict[str] = dict[str] + 1
            else:
                dict[str] = 1
    return dict

word = get_(string=content_text )
#取前十top10词汇
word_list = sorted(word .items(), key=lambda x: x[1], reverse=True)[0:11]
print(word_list)
image.png

这是中文版词频统计结果截图。

好了,今天小结到这里就完了,有兴趣的小伙伴,可以私信我,

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容