python pandas学习

Pandas是python的一个数据分析包,纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。
pandas包括三个数据结构Series、DataFrame和Panel。其中Series是具有均匀数据的一维数组结构,DataFrame是一个具有异构数据的二维数组。

通过数组创建DataFrame

数据以行和列表示。每列表示一个属性和属性值,每行代表对应所有属性的一行数据。DataFrame可以使用以下构造函数创建 -
pandas.DataFrame( data, index, columns, dtype, copy)
构造函数的参数如下

编号 参数 描述
1 data 数据采取各种形式,如:ndarray,series,map,lists,dict,constant和另一个DataFrame。
2 index 对于行标签,要用于结果帧的索引是可选缺省值np.arrange(n),如果没有传递索引值。
3 columns 对于列标签,可选的默认语法是 - np.arange(n)。 这只有在没有索引传递的情况下才是这样。
4 dtype 每列的数据类型。
5 copy 如果默认值为False,则此命令(或任何它)用于复制数据。

通过数组创建DataFrame

import pandas as pd
data = [['Alex',10],['Bob',12],['Clarke',13]]
#df = pd. DataFrame(data)#其他参数默认
df = pd.DataFrame(data,columns=['Name','Age'],dtype=float)

DataFrame基本功能

编号 属性或方法 描述
1 T 转置行和列。
2 axes 返回一个列,行轴标签和列轴标签作为唯一的成员。
3 dtypes 返回此对象中的数据类型(dtypes)。
4 empty 如果NDFrame完全为空[无项目],则返回为True; 如果任何轴的长度为0。
5 ndim 轴/数组维度大小。
6 shape 返回表示DataFrame的维度的元组。
7 size NDFrame中的元素数。
8 values NDFrame的Numpy表示。
9 head() 返回开头前n行。
10 tail() 返回最后n行。
11 columns 获取所有属性。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354

推荐阅读更多精彩内容