BiRNN

# -*- coding: utf-8 -*-
"""
Created on Thu Dec 21 00:38:48 2017

@author: YANG_HE
"""

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

import tensorflow as tf
from tensorflow.python.ops.constant_op import constant
from tensorflow.models.rnn import rnn, rnn_cell
import numpy as np

# Parameters
learning_rate = 0.001
training_iters = 100000
batch_size = 128
display_step = 10

# Network Parameters
n_input = 28 # MNIST data input (img shape: 28*28)
n_steps = 28 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 10 # MNIST total classes (0-9 digits)

# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
# Tensorflow LSTM cell requires 2x n_hidden length (state & cell)
istate_fw = tf.placeholder("float", [None, 2*n_hidden])
istate_bw = tf.placeholder("float", [None, 2*n_hidden])
y = tf.placeholder("float", [None, n_classes])

# Define weights
weights = {
    # Hidden layer weights => 2*n_hidden because of foward + backward cells
    'hidden': tf.Variable(tf.random_normal([n_input, 2*n_hidden])),
    'out': tf.Variable(tf.random_normal([2*n_hidden, n_classes]))
}
biases = {
    'hidden': tf.Variable(tf.random_normal([2*n_hidden])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}

def BiRNN(_X, _istate_fw, _istate_bw, _weights, _biases, _batch_size, _seq_len):

    # BiRNN requires to supply sequence_length as [batch_size, int64]
    # Note: Tensorflow 0.6.0 requires BiRNN sequence_length parameter to be set
    # For a better implementation with latest version of tensorflow, check below
    _seq_len = tf.fill([_batch_size], constant(_seq_len, dtype=tf.int64))

    # input shape: (batch_size, n_steps, n_input)
    _X = tf.transpose(_X, [1, 0, 2])  # permute n_steps and batch_size
    # Reshape to prepare input to hidden activation
    _X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
    # Linear activation
    _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']

    # Define lstm cells with tensorflow
    # Forward direction cell
    lstm_fw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
    # Backward direction cell
    lstm_bw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
    # Split data because rnn cell needs a list of inputs for the RNN inner loop
    _X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)

    # Get lstm cell output
    outputs = rnn.bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, _X,
                                            initial_state_fw=_istate_fw,
                                            initial_state_bw=_istate_bw,
                                            sequence_length=_seq_len)
    print(outputs)

    # Linear activation
    # Get inner loop last output
    return tf.matmul(outputs[-1], _weights['out']) + _biases['out']

pred = BiRNN(x, istate_fw, istate_bw, weights, biases, batch_size, n_steps)


# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer

# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initializing the variables
init = tf.initialize_all_variables()

# Launch the graph
with tf.Session() as sess:
    sess.run(init)
#==============================================================================
#     step = 1
#     # Keep training until reach max iterations
#     while step * batch_size < training_iters:
#         batch_xs, batch_ys = mnist.train.next_batch(batch_size)
#         # Reshape data to get 28 seq of 28 elements
#         batch_xs = batch_xs.reshape((batch_size, n_steps, n_input))
#         # Fit training using batch data
#         sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
#                                        istate_fw: np.zeros((batch_size, 2*n_hidden)),
#                                        istate_bw: np.zeros((batch_size, 2*n_hidden))})
#         if step % display_step == 0:
#             # Calculate batch accuracy
#             acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys,
#                                                 istate_fw: np.zeros((batch_size, 2*n_hidden)),
#                                                 istate_bw: np.zeros((batch_size, 2*n_hidden))})
#             # Calculate batch loss
#             loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys,
#                                              istate_fw: np.zeros((batch_size, 2*n_hidden)),
#                                              istate_bw: np.zeros((batch_size, 2*n_hidden))})
#             print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + \
#                   ", Training Accuracy= " + "{:.5f}".format(acc))
#         step += 1
#     print ("Optimization Finished!")
#     # Calculate accuracy for 128 mnist test images
#     test_len = 128
#     test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
#     test_label = mnist.test.labels[:test_len]
#     print ("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label,
#                                                              istate_fw: np.zeros((test_len, 2*n_hidden)),
#                                                              istate_bw: np.zeros((test_len, 2*n_hidden))}))
#==============================================================================
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容

  • 一早起来,女儿就要找小伙伴玩,黄岛的姐姐没有回来,本来我打算看会书。想想女儿焦急的心情,孤单的寂寞,主动邀请她去赶...
    玩英语阅读 247评论 0 0
  • 1. 打开数据库:sqlite3_open 2.执行语句: sqlite3_exec 3. 创建准备语句:sqli...
    sajiner阅读 1,056评论 0 0
  • 图:几米 本文是,子若有闲原创,欢迎分享... 公众帐号转载,请注明俺公号:子若有闲 微信号:zixian339 ...
    子若有闲阅读 225评论 0 0