复杂度分析(大O表示法)

大 O 复杂度表示法
算法的执行效率,粗略地讲,就是算法代码执行的时间。现在,我就带你一块来估算一下这段代码的执行时间。

代码示例一

假设每行代码执行的时间都一样,为 unit_time。在这个假设的基础之上,这段代码的总执行时间是多少呢?

  • 第 2、3 行代码分别需要 1 个 unit_time 的执行时间
  • 第 4、5 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间
  • 所以这段代码总的执行时间就是 *(2n+2)unit_time。

可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。

我们再来看这段代码


代码示例二

我们依旧假设每个语句的执行时间是 unit_time。那这段代码的总执行时间 T(n) 是多少呢?

  • 第 2、3 、4 行代码分别需要 1 个 unit_time 的执行时间
  • 第 5、6 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间
  • 第 7、8 行都运行了 n² 遍,所以需要 2n²*unit_time 的执行时间
  • 所以,整段代码总的执行时间 T(n) = (2n²+2n+3)*unit_time。

尽管我们不知道 unit_time 的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。我们可以把这个规律总结成一个公式。注意,大 O 就要登场了!


大O表示法

具体解释一下这个公式。

  • T(n) ,它表示代码执行的时间;
  • n 表示数据规模的大小;
  • f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。
  • 公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。

所以,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T(n) = O(2n²+2n+3)。这就是大 O 时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。

时间复杂度分析

我刚才说了,大 O 这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。这段核心代码执行次数的 n 的量级,就是整段要分析代码的时间复杂度。

代码示例三

其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4、5 行代码,这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)。

加法法则:总复杂度等于量级最大的那段代码的复杂度
T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n))).

示例代码四

  • 第一段代码循环执行了 100 次,所以是一个常量的执行时间,跟 n 的规模无关。(忽略)
  • 第二段代码循环执行了N次,复杂度是O(n)
  • 第三段代码循环执行了N²次,复杂度是O(n²)
  • 因为加法法则,总的时间复杂度就等于量级最大的那段代码的时间复杂度,所以整个方法的复杂度是O(n²)

乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)T2(n)=O(f(n))O(g(n))=O(f(n)*g(n)).

示例代码五

  • 我们单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4~6 行的时间复杂度就是,T1(n) = O(n)。
  • 但 f() 函数本身不是一个简单的操作,它的时间复杂度是 T2(n) = O(n),所以,整个 cal() 函数的时间复杂度就是: T(n) = T1(n) T2(n) = O(nn) = O(n²)

几种常见时间复杂度实例分析

几种常见的复杂度

常量阶O(1)

public void calculate(int n){
   int i = 8;
   int j = 6;
   int sum = i + j + n;
   return sum;
}

O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。
只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

对数阶O(logn)、线性对数阶O(nlogn)

public void calculate(int n){
  int i =1;
  while(i<n){
    i*=2;
  }
}

根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:


2的x次方等于N

所以,我们只要知道 x 值是多少,就知道这行代码执行的次数了。通过 2x=n 求解 x 这个问题我们想高中应该就学过了,我就不多说了。x=log2n,所以,这段代码的时间复杂度就是 O(log2n)。

示例代码六

很简单就能看出来,这段代码的时间复杂度为 O(log3n)。
实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。

如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。

    public static void main(String[] args) throws ParseException {
        int[] nums = new int[]{6,7,8,1,2,3,9,10};
        quickSort(nums,0,nums.length-1);
        System.out.println(Arrays.toString(nums));
    }
    
    public static void quickSort(int[] nums,int start, int end){
        if(start<end){
            int i = start;
            int j = end;
            int num = nums[i];
            while (i<j) {
                while(nums[j]>=num && i<j) {
                    j--;
                }
                if(i<j) {
                    nums[i] = nums[j];
                    i++;
                }
                while(nums[i]<num && i<j) {
                    i++;
                }
                if(i<j) {
                    nums[j] = nums[i];
                    j--;
                }
            }
            nums[i] = num;
            quickSort(nums,start,i-1);
            quickSort(nums,i+1,end);
        }
    }

快排递归处理子集的逆向过程就是2的x次方=n,所以记作O(logn)。外面的循环处理n次,整个的复杂度就是O(nlogn)。

O(m+n)、O(m*n)
我们再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。

int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }

  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }

  return sum_1 + sum_2;
}

从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。

所以,上面代码的时间复杂度就是 O(m+n)。针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。

浅析最好、最坏、平均、均摊时间复杂度
最好、最坏情况时间复杂度

// n表示数组array的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) {
      pos = i;
      break;
    }
  }
  return pos;
}

这段代码要实现的功能是,在一个无序的数组(array)中,查找变量 x 出现的位置。如果没有找到,就返回 -1。

  • 最好情况时间复杂度,在最理想的情况下,要查找的变量 x 正好是数组的第一个元素,这个时候对应的时间复杂度就是最好情况时间复杂度。
  • 最坏情况时间复杂度,在最糟糕的情况下,要查找的变量 x 正好是数组的最后一个元素,这个时候对应的时间复杂度就是最糟糕情况时间复杂度。
  • 平均时间复杂度,代码在所有情况下执行的次数的加权平均值。。
  • 均摊时间复杂度,在代码执行的所有复杂度情况中绝大部分是低级别的复杂度,个别情况是高级别复杂度且发生具有时序关系时,可以将个别高级别复杂度均摊到低级别复杂度上。基本上均摊结果就等于低级别复杂度。

总结
一、什么是复杂度分析?
1.数据结构和算法解决是“如何让计算机更快时间、更省空间的解决问题”。
2.因此需从执行时间和占用空间两个维度来评估数据结构和算法的性能。
3.分别用时间复杂度和空间复杂度两个概念来描述性能问题,二者统称为复杂度。
4.复杂度描述的是算法执行时间(或占用空间)与数据规模的增长关系。
二、为什么要进行复杂度分析?
1.和性能测试相比,复杂度分析有不依赖执行环境、成本低、效率高、易操作、指导性强的特点。
2.掌握复杂度分析,将能编写出性能更优的代码,有利于降低系统开发和维护成本。
三、如何进行复杂度分析?
1.大O表示法
1)来源
算法的执行时间与每行代码的执行次数成正比,用T(n) = O(f(n))表示,其中T(n)表示算法执行总时间,f(n)表示每行代码执行总次数,而n往往表示数据的规模。
2)特点
以时间复杂度为例,由于时间复杂度描述的是算法执行时间与数据规模的增长变化趋势,所以常量阶、低阶以及系数实际上对这种增长趋势不产决定性影响,所以在做时间复杂度分析时忽略这些项。
2.复杂度分析法则
1)单段代码看高频:比如循环。
2)多段代码取最大:比如一段代码中有单循环和多重循环,那么取多重循环的复杂度。
3)嵌套代码求乘积:比如递归、多重循环等
4)多个规模求加法:比如方法有两个参数控制两个循环的次数,那么这时就取二者复杂度相加。
四、常用的复杂度级别?
多项式阶:随着数据规模的增长,算法的执行时间和空间占用,按照多项式的比例增长。包括,
O(1)(常数阶)、O(logn)(对数阶)、O(n)(线性阶)、O(nlogn)(线性对数阶)、O(n2)(平方阶)、O(n3)(立方阶)
非多项式阶:随着数据规模的增长,算法的执行时间和空间占用暴增,这类算法性能极差。包括,
O(2^n)(指数阶)、O(n!)(阶乘阶)
五、如何掌握好复杂度分析方法?
复杂度分析关键在于多练,所谓孰能生巧。

六、复杂度分析的4个概念
1.最坏情况时间复杂度:代码在最理想情况下执行的时间复杂度。
2.最好情况时间复杂度:代码在最坏情况下执行的时间复杂度。
3.平均时间复杂度:用代码在所有情况下执行的次数的加权平均值表示。
4.均摊时间复杂度:在代码执行的所有复杂度情况中绝大部分是低级别的复杂度,个别情况是高级别复杂度且发生具有时序关系时,可以将个别高级别复杂度均摊到低级别复杂度上。基本上均摊结果就等于低级别复杂度。

七、为什么要引入这4个概念?
1.同一段代码在不同情况下时间复杂度会出现量级差异,为了更全面,更准确的描述代码的时间复杂度,所以引入这4个概念。
2.代码复杂度在不同情况下出现量级差别时才需要区别这四种复杂度。大多数情况下,是不需要区别分析它们的。

八、如何分析平均、均摊时间复杂度?
1.平均时间复杂度
代码在不同情况下复杂度出现量级差别,则用代码所有可能情况下执行次数的加权平均值表示。
2.均摊时间复杂度
两个条件满足时使用:1)代码在绝大多数情况下是低级别复杂度,只有极少数情况是高级别复杂度;2)低级别和高级别复杂度出现具有时序规律。均摊结果一般都等于低级别复杂度。

情况下时间复杂度会出现量级差异,为了更全面,更准确的描述代码的时间复杂度,所以引入这4个概念。
2.代码复杂度在不同情况下出现量级差别时才需要区别这四种复杂度。大多数情况下,是不需要区别分析它们的。

八、如何分析平均、均摊时间复杂度?
1.平均时间复杂度
代码在不同情况下复杂度出现量级差别,则用代码所有可能情况下执行次数的加权平均值表示。
2.均摊时间复杂度
两个条件满足时使用:1)代码在绝大多数情况下是低级别复杂度,只有极少数情况是高级别复杂度;2)低级别和高级别复杂度出现具有时序规律。均摊结果一般都等于低级别复杂度。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,313评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,369评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,916评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,333评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,425评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,481评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,491评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,268评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,719评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,004评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,179评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,832评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,510评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,153评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,402评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,045评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,071评论 2 352

推荐阅读更多精彩内容