OpenCV、NumPy和Matplotlib直方图比较

前言

使用OpenCV提供的cv2.calcHist()函数可以用来计算直方图。此外,NumPy和Matplotlib同样也为创建直方图提供了类似的函数。出于提高性能目的,我们来比较这些函数,使用OpenCV、NumPy和Matplotlib创建直方图,然后测量每个直方图计算的执行时间并将结果绘制在图形中,比较不同库中计算直方图的不同效率。

OpenCV、NumPy和Matplotlib灰度直方图比较

使用timeit.default_timer测量执行时间,因为它会自动提供系统平台和Python版本上可用的最佳时钟,为了使用timeit.default_timer测量执行时间,首先需要将其导入:

可以使用以下方法计算程序的执行时间:

考虑到default_timer()测量值可能会受到同时运行的其他程序的影响。因此,获取准确计时的最佳方法是重复数次并使用最佳时间。当让,我们也可以采用其他方法来测量更加精确的时间,例如多次重复运行取平均值,或者其他更加有效避免异常的方法,在这里为了简单起见,我们重复数次并使用最佳时间。

而为了计算和比较直方图,我们需要使用以下函数:

1.OpenCV提供cv2.calcHist()函数

2.NumPy提供的np.histogram()函数

3.Matplotlib提供的plt.hist()函数

用于计算上述每个函数的执行时间的代码如下所示。首先,导入所需库:

然后编写可视化函数,在同一图中显示运行结果,进行更好的对比:

接下来,就是程序的最关键部分了,使用不同库中计算直方图的方法,并获取程序运行时间:

最后,我们绘制灰度图及其直方图:

how_img_with_matplotlib(cv2.cvtColor(gray_image,cv2.COLOR_GRAY2BGR),"gray",1)

show_hist_with_matplotlib_gray(hist,"grayscale histogram (OpenCV)-"+str('% 6.2f ms'% exec_time_calc_hist),2,'m')

show_hist_with_matplotlib_gray(hist_np,"grayscale histogram (Numpy)-"+str('% 6.2f ms'% exec_time_np_hist),3,'m')

show_hist_with_matplotlib_gray(n,"grayscale histogram (Matplotlib)-"+str('% 6.2f ms'% exec_time_plt_hist),4,'m')

plt.show()

由上面实例可以看出,cv2.calcHist()的执行速度比np.histogram()和plt.hist()都快。因此,出于性能考虑,在计算图像直方图时可以使用OpenCV函数。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容