Similarity Queries for Security Name by Gensim

Introduction of Gensim

Gensim is a free Python library designed to automatically extract semantic topics from documents, as efficiently (computer-wise) and painlessly (human-wise) as possible.

Gensim is designed to process raw, unstructured digital texts (“plain text”). The algorithms in gensim, such as Latent Semantic Analysis, Latent Dirichlet Allocation and Random Projections discover semantic structure of documents by examining statistical co-occurrence patterns of the words within a corpus of training documents. These algorithms are unsupervised, which means no human input is necessary – you only need a corpus of plain text documents.

Once these statistical patterns are found, any plain text documents can be succinctly expressed in the new, semantic representation and queried for topical similarity against other documents.

Flowchart Diagram

(original flowchart diagram, no related diagram in Gensim official website)


2018-05-17 10_53_55-Similarity Queries for Security Name by Gensim - Data Collection Technology - Mo.png

Code Example

Train data sample:
F1234567OX~Undrly Alba (Crus) Gth Prop 2 Life~Undrly Alba (Crus) Gth Prop 2 Life
F7654321OY~Undrly Alba (Crus) Mixed Pen~Undrly Alba (Crus) Mixed Pen
FABCDEF9P0~Undrly Alba (Crus) Nth Am Pen~Undrly Alba (Crus) Nth Am Pen
FFEDCBA9P4~Undrly Alba (Crus) Secure Inc Pen~Undrly Alba (Crus) Secure Inc Pen
F1234567P5~Undrly Alba (Crus) UK Pen~Undrly Alba (Crus) UK Pen
It means: security id~security name~security legal name
The code splits every single line via character '~', and only apply security legal name to construct dictionary and model.

print('Begin read data source')
data_train = []
    for security in open(securitynamepath, encoding='utf-8'):
        if len(security.split('~')) == 3:
            data_train.append([word for word in security.split('~')[2].lower().split()
                   if word not in stoplist])
print('End read data source')

To get similarity of security name, the POC applies tf-idf algorithm to build model.

The sample code is less than 100 lines,
To initial dictionary and model like this,it will spend less than one second to get query result.

import time
from gensim import corpora, models, similarities
from collections import defaultdict
import os
 
dictpath = './data/model/security.dict'
modelpath = './data/model/security.mm'
securitynamepath = './data/security/securityname.txt'
start = time.time()
alltext = [security for security in open(securitynamepath, encoding='utf-8')]
end = time.time()
print('Read security name list cost: ', end - start)
 
def startjob(regeneratemodel=False, usertext='DSP BlackRock FMP Sr 229 51 Mn Dir Gr'):
    if regeneratemodel or (not os.path.exists(dictpath) or not os.path.exists(modelpath)):
        generatemodel()
 
    time_start = time.time()
    print('Load model start')
    load_start = time.time()
    corpus = corpora.MmCorpus(modelpath)
    dictionary = corpora.Dictionary.load(dictpath)
    tfidf_model = models.TfidfModel(corpus)
    index = similarities.SparseMatrixSimilarity(
        tfidf_model[corpus],
        num_features=len(dictionary.keys()))
    load_end = time.time()
    print('Load model cost: ', load_end - load_start)
    print('Load model end')
    ###############By LSI#####################
    # corpus_tfidf = tfidf_model[corpus]
    # dictionary = corpora.Dictionary.load(dictpath)
    # lsi_model = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=2)
    # corpus_lsi = lsi_model[corpus_tfidf]
    # corpus_simi_matrix = similarities.MatrixSimilarity(corpus_lsi)
    # 计算一个新的文本与既有文本的相关度
    # test_text = usertext.lower().split()
    # test_bow = dictionary.doc2bow(test_text)
    # test_tfidf = tfidf_model[test_bow]
    # test_lsi = lsi_model[test_tfidf]
    # test_simi = corpus_simi_matrix[test_lsi]
    # test_simi = sorted(enumerate(test_simi), key=lambda item: -item[1])
    ###############By LSI#####################
 
    ###############By tfidf#####################
    print('Query start')
    query_start = time.time()
    test_text = usertext.lower().split()
    doc_test_vec = dictionary.doc2bow(test_text)
    
    test_simi = index[tfidf_model[doc_test_vec]]
    test_simi = sorted(enumerate(test_simi), key=lambda item: -item[1])
    ###############By tfidf#####################
 
    outputlist = [test for test in test_simi if test[1] > 0.3]
    for output in outputlist:
        print(alltext[output[0]], output[1])
        if len(alltext[output[0]].split('~')) == 3 and alltext[output[0]].split('~')[1] == usertext:
            print("Congratulations, you find the right answer!")
            break
    time_end = time.time()
    print('Query cost: ', time_end - query_start)
    print('Totally cost: ', time_end - time_start)
    print('Query end')
 
def generatemodel():
    print('Begin genertate model')
    stoplist = set('for a of the and to in'.split())
    print('Begin read data source')
    data_train = []
    count = 0
    for security in open(securitynamepath, encoding='utf-8'):
        if len(security.split('~')) == 3:
            data_train.append([word for word in security.split('~')[2].lower().split()
                   if word not in stoplist])
        count += 1
        print(count)
    print('End read data source')
    #去除只出现一次的单词,查询security name相似度的需求不需要这个特性
    # frequency = defaultdict(int)
    # for text in data_train:
    #     for token in text:
    #         frequency[token] += 1
    # data_train = [[token for token in text if frequency[token] > 1]
    #               for text in data_train]
    print(data_train)
    dictionary = corpora.Dictionary(data_train)
    dictionary.save(dictpath)
    corpus = [dictionary.doc2bow(text) for text in data_train]
    corpora.MmCorpus.serialize(modelpath, corpus)
    print('End genertate model')
 
if __name__ == '__main__':
    startjob(False, u'Undrly Alba LASPEN Property')

Output Analyzation

The run console output is:


2018-05-11 11_22_06-similarsecurity - [D__GIT_researchinit_similarsecurity] - ..._main.py - PyCharm .png

The information of output:

"Using TensorFlow backend": does it means Gensim using TensorFlow? But there is no official description about it

There is time cost information in output list:

Load security name cost (amount: 599214 records): 0.26 second

Load dictionary and model: 8.94 seconds

Similarity query for test text: 19.87 seconds

User test text:

Undrly Alba LASPEN Property

Similarity query result:

The result from gensim is key:value structure: Index:Probability, such as: 10:0.9348, means the probalility of the security name which index is 10, is 0.9348

To be easy to get full information, output security id, security name with abbreviation and security legal name by result index.

The result sorts in descending order by probility, such as:

F1234567PM~Undrly Alba LASPEN Property PP~Undrly Alba LASPEN Property PP
0.9348221
F7654321PI~Undrly Alba LASPEN UK Equity PP~Undrly Alba LASPEN UK Equity PP
0.83671427

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 12,183评论 0 10
  • 文|逆旅人 人生路上,步履不停。总有那么一点来不及。——《步履不停》是枝裕和 如果一定要有那么一点“来不及”存在,...
    逆旅人阅读 3,222评论 0 0
  • 多长时间了 还没有遇见你 没关系 我还可以再继续等下去 也许 我躺着绿野上熟睡的时候 你策马而过 大地只留有马蹄的...
    谎言之躯阅读 1,639评论 2 1
  • 今天有点事,心情乱了,画自然也乱了。
    刘家姥姥阅读 1,499评论 1 2

友情链接更多精彩内容