威尔逊得分 Wilson Score 排序算法

欢迎Follow我的GitHub, 关注我的简书.

威尔逊得分排序算法,Wilson Score,用于质量排序,数据含有好评和差评,综合考虑评论数好评率,得分越高,质量越高。

源码参考:
https://github.com/SpikeKing/MachineLearningTutorial/blob/master/wilson_score/wilson_score_model.py

Wilson Score

u表示正例数(好评),v表示负例数(差评),n表示实例总数(评论总数),p表示好评率,z是正态分布的分位数(参数),S表示最终的威尔逊得分。z一般取值2即可,即95%的置信度。

正太分布的分位数表:

分位数表

算法性质:

  1. 性质:得分S的范围是[0,1),效果:已经归一化,适合排序
  2. 性质:当正例数u为0时,p为0,得分S为0;效果:没有好评,分数最低;
  3. 性质:当负例数v为0时,p为1,退化为1/(1 + z^2 / n),得分S永远小于1;效果:分数具有永久可比性;
  4. 性质:当p不变时,n越大,分子减少速度小于分母减少速度,得分S越多,反之亦然;效果:好评率p相同,实例总数n越多,得分S越多;
  5. 性质:当n趋于无穷大时,退化为p,得分S由p决定;效果:当评论总数n越多时,好评率p带给得分S的提升越明显;
  6. 性质:当分位数z越大时,总数n越重要,好评率p越不重要,反之亦然;效果:z越大,评论总数n越重要,区分度低;z越小,好评率p越重要;

本文的源码

Python实现

def wilson_score(pos, total, p_z=2.):
    """
    威尔逊得分计算函数
    参考:https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
    :param pos: 正例数
    :param total: 总数
    :param p_z: 正太分布的分位数
    :return: 威尔逊得分
    """
    pos_rat = pos * 1. / total * 1.  # 正例比率
    score = (pos_rat + (np.square(p_z) / (2. * total))
             - ((p_z / (2. * total)) * np.sqrt(4. * total * (1. - pos_rat) * pos_rat + np.square(p_z)))) / \
            (1. + np.square(p_z) / total)
    return score

威尔逊得分算法的分布图

分布

实例:假设医生A有100个评价,1个差评99个好评。医生B有2个评价,都是好评,那哪个应该排前面?
在z=2时,即95%的置信度,医生A的得分是0.9440,医生B的得分是0.3333,医生A排在前面。


PS:评分等级问题:如五星评价体系,或者百分评价体系,该怎么办呢?

将威尔逊得分的公式由 伯努利分布 修改为 正态分布 即可。

wilson_norm

注意:均值和方差均是归一化之后的数值。

Python实现:

def wilson_score_norm(mean, var, total, p_z=2.):
    """
    威尔逊得分计算函数 正态分布版 支持如5星评价,或百分制评价
    :param mean: 均值
    :param var: 方差
    :param total: 总数
    :param p_z: 正太分布的分位数
    :return: 
    """
    # 均值方差需要归一化,以符合正太分布的分位数
    score = (mean + (np.square(p_z) / (2. * total))
             - ((p_z / (2. * total)) * np.sqrt(4. * total * var + np.square(p_z)))) / \
            (1 + np.square(p_z) / total)
    return score

归一化的示例:

def test_of_values():
    """
    五星评价的归一化实例,百分制类似
    :return: 总数,均值,方差
    """
    max = 5.  # 五星评价的最大值
    min = 1.  # 五星评价的最小值
    values = np.array([1., 2., 3., 4., 5.])  # 示例

    norm_values = (values - min) / (max - min)  # 归一化
    total = norm_values.size  # 总数
    mean = np.mean(norm_values)  # 归一化后的均值
    var = np.var(norm_values)  # 归一化后的方差
    return total, mean, var

PS:关于z参数,即正太分位数。正太分位数影响wilson得分的分布,z参数取值依据就是样本数的量级。举个例子:同样是100个样本,90个好评,z取值2或6,分数差别很大,体系所容纳(或区分)的样本数也相差较大(同样是0.82分和90%好评率,z=2需要100个样本,z=6需要1000个样本),一般而言,样本数的量级越大,z的取值大。

print 'score: %s' % wilson_score(90, 90 + 10, p_z=2.)
print 'score: %s' % wilson_score(90, 90 + 10, p_z=6.)
print 'score: %s' % wilson_score(900, 900 + 100, p_z=6.)

# 取值2-100:score: 0.823802352689
# 取值6-100:score: 0.606942322627
# 取值6-1000:score: 0.828475631056

参考:Binomial proportion confidence intervalNormal distributionHow Not To Sort By Average RatingRelationship between Binomial and Normal Distributions

Thanks @boyi老师

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容