回归与线性对数模型可用于拟合所给定的数据集。线性回归方法是利用一条直线模型对数据进行拟合的,可以是基于一个自变量的,也可以是基于多个自变量的。
线性对数模型则是拟合多维离散概率分布的。如果给定n维(例如,用n个属性描述)元组的集合,则可以把每个元组看作n维空间的点。对于离散属性集,可以使用线性对数模型,基于维组合的一个较小子集,来估计多维空间中每个点的概率。这使得高维数据空间可以由较低维空间构造。因此,线性对数模型也可以用于维归约和数据光滑。
回归与线性对数模型均可用于稀疏数据及异常数据的处理。但是回归模型对异常数据的处理结果要好许多。应用回归方法处理高维数据时计算复杂度较大,而线性对数模型则具有较好的可扩展性。