Python做图的方法

<p>最近一直没有更新文章,在学习Machine learning。然后业余在kaggle那里瞎转,对Python常用的作图摸了个遍,本文将对这些作图方法做个简单介绍</p>

<p>一般我们作图主要是为了看数据分布、数据趋势、以及比较大小。常用的图包括:</p>

  • line(折线图):展示趋势
  • scatter (散点图):展示分布(机械学习中经常使用)
  • bar (柱状图):感觉柱状图主要是多项目的趋势比较
  • pie (饼图):展示分布
  • box (箱型图):展示单个项目数据的分布细节
  • heatmap (热力图):主要是列联表表示数据相对大小

<p>作图的工具有很多,例如Pandas、Seaborn、ggplot、Bokeh、Plotly、Pypal。而对于我来说,作图的工具主要就是两种matplotlibseaborn两种。matplotlib可以在numpy数组里面使用,也可以处理pandas中的dataframe。</p>

<p>此外matplotlib还是python作图的基础包,大部分作图模块都是基于matplotlib来的,因此matplotlib的自定义属性最高。为了减少美化以及配色的麻烦,我一般时候喜欢作图的使用通过引用ggplot的style来解决美化问题:</p>

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    plt.style.use('ggplot')   ##使得作图自带色彩,这样不用费脑筋去考虑配色什么的;
    %matplotlib inline

numpy array的作图

<p>numpy数组主要是出现在python的数据分析里面,例如,在监督型学习的时候,需要做对分布的散点进行模式识别,并拟合。在拟合的过程中,需要用到梯度下降法,为了快速了解收敛的过程,需要对cost function进行监督。</p>

<p>在这里先不描述梯度下降法的作图方法,先简单介绍numpy数组的散点图以及拟合方法(注意poly1d不是拟合方法,而是一个多项式生成器,真正的拟合在polyfit那里)。通过linspace生成一组数据,并引入random:</p>

    x = np.linspace(1,10,80)
    y = x + np.random.standard_normal(size=80)
    y_s = np.ploy1d(np.plotfit(x,y,1))(x)
    plt.scatter(x,y)
    plt.plot(x, y_s)
    plt.show()

<p>这样就可以生成下面的这个图了:</p>

一维拟合

<p>当然,可以看到。这个图里面散点的点比较大,可以通过改变s参数更改散点的大小(如果将s变为一个函数,那么散点图就可以成为泡沫图了),线可以通过linewidth 加粗。在这里,我们将s调大,并将其调成半透明,将线加粗,加入轴说明和图表抬头(title的字号大小通过fontsize来改变):</p>

    x = np.linspace(1,10,80)
    y = x + np.random.standard_normal(size=80)
    plt.scatter(x,y, s = 20, alpha=0.2)
    plt.plot(x, y_s, linewidth = 2)
    plt.xlabel('area')
    plt.ylabel('price')
    plt.legend(('fit', 'origin'), loc = 'best', fontsize = 8)
    plt.title('the price of the house with various area', {'fontsize':10})
    plt.show()
更改后的一维拟合

Pandas的作图方法

<p>dataframe里面一般涉及几组参数,一般无外乎是通过作图来发现参数组之间的规律或者关系。并且Pandas里面所有的作图可以都可以通过df.plot来实现,不同的图仅仅需要plot函数中的kind参数,将其改为ine、scatter、bar和pie等可以生成对应的图,详细需要看Visualization章节。在这里,我将以散点图为例做一个讲解:</p>

    x = np.linspace(0,10,101) + np.random.normal(1,0.5,101)
    y = np.linspace(20,30,101) + np.random.normal(1,0.5,101)
    z = np.linspace(40,50,101) + np.random.normal(1,0.5,101)
    df = pd.DataFrame({'x':x, 'y':y, 'z':z, 'H' : 2*x ** 3 + 3*np.log10(y)+4*z})
    df.head(5)

<p>先生成一个数据表格:</p>

df

<p>例如,我想看x-H的散点图关系。可以将其中的kind参数设置为scatter,x和y的值取为对应列的名称,加入title就可以了:</p>

    df.plot(kind='scatter', x='x', y='H')
    plt.title('x vs H')
    plt.show()
x vs H

<p>当然,如果我想同时看x,y,z对H的影响,似乎就要将上面的这个图重复三遍,比较麻烦。Pandas里面的scatter_matrix就可以解决这个问题,引用pandas.tools.plotting中的scatter_matrix函数:</p>

  from pandas.tools.plotting import scatter_matrix
  scatter_matrix(df, figsize=(10,1  0), diagonal='kde')
  plt.suptitle('the inflence of x,y,z to H')
  plt.show()
xyz vs H

Heatmap

<p>这是一种比较特殊的图,一般是对pivot_table的可视化展出,由于这种展示效果比较好,也比较直观,所以想在这里稍微提一下。先给出heatmap中的例子,稍微作了下改动,展示的是6*6随机数矩阵:</p>

    import numpy as np
    import seaborn as sns
    random_set = np.random.randint(0,10,(6,6))
    sns.heatmap(random_set)

<p>在一开始我提到了,这个东西比较多的可以用在pivot_table里面,举个例子,我要展示几个旗舰店(A店、B店、C店)的商品(a、b、c、d、e)的销量。手头上没有数据,生成个随机数组凑合着用吧:</p>

    mall_all = ['mall_A', 'mall_B', 'mall_C']
    com_all = ['commodity_a', 'commodity_b','commodity_c', 'commodity_d', 'commodity_e']
    mall = np.random.choice(mall_all,(1,100))[0]
    com = np.random.choice(com_all, (1,100))[0]
    ammout = np.random.randint(1,10,(100))
    index = np.linspace(1,100, 100)
    df = pd.DataFrame({'mall':mall, 'com':com, 'amount':ammout}, index=index, columns=['mall', 'com', 'amount'])
    df.head()

<p>生成出来的数据大概是这个样子的:</p>

随机原始数据

<p>对其进行数据透视,以Mall为列,以Commodity为行,总计售出商品数量:</p>

    pivot_df = pd.pivot_table(df, index='com', columns='mall', values=['amount'], aggfunc=np.sum)
    pivot_df
数据透视后

<p>通过heatmap将其进行可视化转化:</p>

    sns.heatmap(pivot_df)
    plt.xlabel('Mall')
    plt.ylabel('Commodity')
    plt.title('Mall_Commodity')
    plt.show()
数据透视的可视化

<p>使用heatmap的几个重要的参数,vmin和vmax可以控制整图的最小和最大值,cmap为整体配色方案,annot参数用来控制是否显示原始数据,fmt用来控制展示数据格式,linewidths和linecolor用来控制分割线的粗细以及颜色,cbar用来确认是否显示图例。下面将调整一下最大和最小值,并且打开annot,更改整体配色方案,将分割线加粗并设置为白色看看:</p>

    sns.heatmap(pivot_df, vmax=80, annot=True, linecolor='white', linewidths=0.5, cmap='RdBu_r')
    plt.xlabel('Mall')
    plt.ylabel('Commodity')
    plt.title('Mall_Commodity')
    plt.show()
数据透视的可视化_改

小结

<p>想想,作图也是我在python学习里面的一个巨坑,因为命令和参数比较多,但是用的比较少,偏偏作图包还比较多,一直搞不太懂各种的逻辑,所以一直忘记。这一次经过给自己一个详细的总结之后,应该会好很多。</p>

<p>在Python作图里面,还有一类图比较常见,就是地图。之前虽然我也有利用plotly玩过,但感觉还是没有进到里面的细节。我会再用一篇文章详细讲述一下,敬请期待。</p>

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容