基于CNN-GRU-Attention的时间序列回归预测matlab仿真

1.算法运行效果图预览


2.算法运行软件版本

matlab2022a


3.算法理论概述

        CNN-GRU-Attention模型结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制(Attention)来进行时间序列数据的回归预测。CNN用于提取时间序列的局部特征,GRU用于捕获时间序列的长期依赖关系,而注意力机制则用于在预测时强调重要的时间步。


3.1 CNN(卷积神经网络)部分

       在时间序列回归任务中,CNN用于捕获局部特征和模式:



3.2 GRU(门控循环单元)部分

GRU用于捕捉时间序列的长期依赖关系:


3.3 Attention机制部分


最后,通过反向传播算法调整所有参数以最小化预测误差,并在整个训练集上迭代优化模型。





4.部分核心程序

%CNN-GRU-ATT

layers = func_model(Dim);


%设置

%迭代次数

%学习率为0.001

options = trainingOptions('adam', ...      

   'MaxEpochs', 1500, ...                

   'InitialLearnRate', 1e-4, ...         

   'LearnRateSchedule', 'piecewise', ... 

   'LearnRateDropFactor', 0.1, ...       

   'LearnRateDropPeriod', 1000, ...       

   'Shuffle', 'every-epoch', ...         

   'Plots', 'training-progress', ...    

   'Verbose', false);


%训练

Net = trainNetwork(Nsp_train2, NTsp_train,layers, options);


figure

subplot(211);

plot(1: Num1, Tat_train,'-bs',...

   'LineWidth',1,...

   'MarkerSize',6,...

   'MarkerEdgeColor','k',...

   'MarkerFaceColor',[0.9,0.0,0.0]);

hold on

plot(1: Num1, T_sim1,'g',...

   'LineWidth',2,...

   'MarkerSize',6,...

   'MarkerEdgeColor','k',...

   'MarkerFaceColor',[0.9,0.9,0.0]);


legend('真实值', '预测值')

xlabel('预测样本')

ylabel('预测结果')

grid on


subplot(212);

plot(1: Num1, Tat_train-T_sim1','-bs',...

   'LineWidth',1,...

   'MarkerSize',6,...

   'MarkerEdgeColor','k',...

   'MarkerFaceColor',[0.9,0.0,0.0]);

legend('真实值', '预测值')

xlabel('预测样本')

ylabel('预测误差')

grid on

ylim([-50,50]);

figure

subplot(211);

plot(1: Num2, Tat_test,'-bs',...

   'LineWidth',1,...

   'MarkerSize',6,...

   'MarkerEdgeColor','k',...

   'MarkerFaceColor',[0.9,0.0,0.0]);

hold on

plot(1: Num2, T_sim2,'g',...

   'LineWidth',2,...

   'MarkerSize',6,...

   'MarkerEdgeColor','k',...

   'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')

xlabel('测试样本')

ylabel('测试结果')

grid on

subplot(212);

plot(1: Num2, Tat_test-T_sim2','-bs',...

   'LineWidth',1,...

   'MarkerSize',6,...

   'MarkerEdgeColor','k',...

   'MarkerFaceColor',[0.9,0.0,0.0]);

legend('真实值', '预测值')

xlabel('预测样本')

ylabel('预测误差')

grid on

ylim([-50,50]);

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容