国科大深度学习复习

国科大深度学习复习

国科大深度学习课程知识点整理
项目文件为国科大深度学习复习过程中的相关知识点整理,包括搬运他人的见解
如有错误,欢迎批评指正~

2021考题

计算题代码:

import tensorflow as tf

input_x = tf.constant([
    [[[5, 6, 0, 1, 8, 2],
      [0, 9, 8, 4, 6, 5],
      [2, 6, 5, 3, 8, 4],
      [6, 3, 4, 9, 1, 0],
      [7, 5, 9, 1, 6, 7],
      [2, 5, 9, 2, 3, 7]

      ]]])
filters = tf.constant([
    [[[0, -1, 1], [1, 0, 0], [0, -1, 1]]]
])

input_x=tf.reshape(input_x,(1,6,6,1))
filters=tf.reshape(filters,[3,3,1,1])

res = tf.nn.conv2d(input_x, filters, strides=1, padding='VALID')
print('Valid 无激活函数下的输出',res)
res=tf.squeeze(res)
print('Valid 条件下可视化的输出:',res)


# print('Valid 激活函数下输出',tf.nn.relu(res))
print('Valid 激活函数下可视化输出:',tf.squeeze(tf.nn.relu(res)))
#在full卷积下,TF中没有这个参数,可以手动加0实现
input_x = tf.constant([
    [[[0,0,0,0,0,0,0,0],
  [0,5,6,0,1,8,2,0],
  [0,2,5,7,2,3,7,0],
  [0,0,7,2,4,5,6,0],
  [0,5,3,6,9,3,1,0],
  [0,6,5,3,1,4,6,0],
  [0,5,2,4,0,8,7,0],
    [0,0,0,0,0,0,0,0]
]]])
input_x=tf.reshape(input_x,(1,8,8,1))

res = tf.nn.conv2d(input_x, filters, strides=1,padding='SAME')
print('Full(加0)未使用激活之前的输出',res)

print('Full(加0)未使用激活函数之前的可视化输出,',tf.squeeze(res))

out = tf.nn.relu(res)
print('Full 激活的输出',out)
print('Full 激活之后的可视化输出,',tf.squeeze(out))
import torch
import torch.nn as nn

criterion = nn.BCELoss()#默认是求均值,数据需要是浮点型数据
pre=torch.tensor([0.1,0.2,0.3,0.4]).float()
tar=torch.tensor([0,0,0,1]).float()
l=criterion(pre,tar)
print('二分类交叉熵损失函数计算(均值)',l)


pre=torch.tensor([0.2,0.8,0.4,0.1,0.9]).float()
tar=torch.tensor([0,1,0,0,1]).float()

pre=torch.tensor([0.1,0.2,0.3,0.4]).float()
tar=torch.tensor([0,0,0,1]).float()
criterion = nn.BCELoss(reduction="sum")#求和
l=criterion(pre,tar)
print('二分类交叉熵损失函数计算(求和)',l)

loss=nn.BCELoss(reduction="none")#reduction="none"得到的是loss向量#对每一个样本求损失
l=loss(pre,tar)
print('每个样本对应的loss',l)
criterion2=nn.CrossEntropyLoss()
import numpy as np
pre1=torch.tensor([np.log(20),np.log(40),np.log(60),np.log(80)]).float()
# soft=nn.Softmax(dim=0)
# pre=soft(pre).float()#bs*label_nums
pre1=pre1.reshape(1,4)
tar=torch.tensor([3])
loss2=criterion2(pre1,tar)
print('多分类交叉熵损失函数pre1条件下',loss2)

pre2=torch.tensor([np.log(10),np.log(30),np.log(50),np.log(90)]).float()
pre2=pre2.reshape(1,4)
tar=torch.tensor([3])
loss2=criterion2(pre2,tar)
print('多分类交叉熵损失函数pre2条件下',loss2)

2023考题

本文由mdnice多平台发布

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,204评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,091评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,548评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,657评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,689评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,554评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,302评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,216评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,661评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,851评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,977评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,697评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,306评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,898评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,019评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,138评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,927评论 2 355

推荐阅读更多精彩内容