如何解读链式中介作用分析结果?

中介作用是研究自变量X对因变量Y的影响时,是否会先通过中介变量M,再去影响Y。比如工作满意度(X)会影响到创新氛围(M),再影响最终工作绩效(Y)。

在中介作用研究中,如果自变量与因变量之间存在多个中介变量被称为多重中介模型。

一、基本类型

根据中介变量之间是否有影响关系又可分为两种类型。

并行中介模型:并行多重中介模型,中介变量之间互不影响

链式中介模型:链式多重中介模型,中介变量之间相互影响


目前比较常见的是Bootstrap法进行中介效应检验。

二、多重中介操作方法

(1)并行中介基于SPSSAU的操作:

①登录SPSSAU上传数据;

②在SPSSAU左侧仪表盘选择[问卷研究]--[中介作用];

③拖拽相应的变量到对应分析框;中介变量可同时放入多个;

④[中介类型]选择“平行中介”,点击开始分析。

SPSSAU中介作用分析


结果分析


上表是对中介作用分析结果的基本汇总。本次研究以X作为自变量,M1、M2作为中介变量,Y为因变量进行分析。本次中介效应分析共涉及共4个模型,模型方程分别如下:


Y=2.835+0.408*X
M1=2.093+0.541*X
M2=1.152+0.776*X
Y=1.611+0.038*X+0.524*M1+0.110*M2


上表是以Bootstrap法进行中介检验,分别对应两条路径结果:X->M1->Y 和 X->M2->Y;

如果置信区间不包括0,那么中介作用显著,支持有中介作用的假设; 如果包括0,则不显著,不支持有中介作用的假设。


分别对两条路径分别进行中介效应检验。首先看X->M1->Y这条路径,bootstrap 95%置信区间为0.337~0.498,不包括0,说明X对Y影响时M1的中介效应显著。中介效应为0.284。

接着看X->M2->Y这条路径,bootstrap 95%置信区间为0.033~0.221,检验结果不包括0,说明X对Y影响时M2的中介效应显著。中介效应为0.085。


上表为中介作用效应量结果汇总表格。如果中介效应显著,可在此表中进一步查看中介作用的效应占比。


(2)链式中介基于SPSSAU的操作:



①登录SPSSAU上传数据;

②在SPSSAU左侧仪表盘选择[问卷研究]--[中介作用];

③拖拽相应的变量到对应分析框;中介变量可同时放入多个;

④[中介类型]选择“链式中介”(默认为并行中介);

⑤点击开始分析。


SPSSAU中介作用分析


结果分析

上表是对中介作用分析结果的基本汇总。本次研究以X作为自变量,M1、M2作为中介变量,Y为因变量进行分析。本次中介效应分析共涉及共4个模型。

上表为中介效应分过程汇总表格,输出包括中介效应、间接效应和总效应等结果。

如果置信区间不包括0,那么中介作用显著,支持有中介作用的假设; 如果包括0,则不显著,不支持中介作用的假设。


其中,总效应bootstrap95%置信区间为0.331~0.484,检验结果不包括0,说明总效应显著直接效应95%置信区间为-0.055~0.132,检验结果包括0,说明直接效应不显著



间接效应需要结合两条或多条路径回归模型的结果值相乘得到,比如中介变量M时,X->M和M->Y的效应值相乘,即得到间接效应值,间接效应值进行Bootstrap抽样检验,最终验证是否存在中介效应。间接效应结果可通过下面的间接效应分析表格进行查看。



使用Bootstrap抽样检验法进行中介效应研究,抽样次数为5000次,结果显示:


针对链式中介效应路径进行分析,针对‘X⇒M1⇒M2⇒Y’这条中介路径来看, 95%区间并不包括数字0(95% CI:0.003~0.021),因而说明此条中介效应路径存在。


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容