题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
TreeNode root = new TreeNode(pre[0]);
int i = 0;
while(in[i]!=root.val){
i++;
}
if(i==0){
root.left = null;
}else{
int [] leftPre = new int[i];
System.arraycopy(pre,1,leftPre,0,i);
int [] leftIn = new int[i];
System.arraycopy(in,0,leftIn,0,i);
root.left = reConstructBinaryTree(leftPre,leftIn);
}
if(i==in.length-1){
root.right=null;
}else{
int [] rightPre = new int[pre.length-i-1];
System.arraycopy(pre,i+1,rightPre,0,pre.length-i-1);
int [] rightIn = new int[pre.length-i-1];
System.arraycopy(in,i+1,rightIn,0,pre.length-i-1);
root.right = reConstructBinaryTree(rightPre,rightIn);
}
return root;
}
}
第二遍做的时候写的代码:
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
if(pre.length!=in.length||pre.length==0){
return null;
}
TreeNode root = new TreeNode(pre[0]);
//拆分左右子树
int rootIndex = -1;
for(int i=0; i<in.length; i++){
if(in[i]==pre[0]){
rootIndex = i;
}
}
// 无法重建二叉树
if(rootIndex == -1){
return null;
}
//存在左子树
if(rootIndex!=0){
//左子树的中序
int[] newLeftIn = new int[rootIndex];
System.arraycopy(in,0,newLeftIn,0,rootIndex);
//左子树的前序
int[] newLeftPre = new int[rootIndex];
System.arraycopy(pre,1,newLeftPre,0,rootIndex);
root.left = reConstructBinaryTree(newLeftPre,newLeftIn);
}
//存在右子树
if(in.length-rootIndex-1!=0){
//右子树的中序
int[] newRightIn = new int[in.length-rootIndex-1];
System.arraycopy(in,rootIndex+1,newRightIn,0,in.length-rootIndex-1);
//右子树的前序
int[] newRigntPre = new int[in.length-rootIndex-1];
System.arraycopy(pre,1+rootIndex,newRigntPre,0,in.length-rootIndex-1);
root.right = reConstructBinaryTree(newRigntPre,newRightIn);
}
return root;
}
}