这个工作做到的话可以显示出flops(FLOPS:全称是floating point operations per second),parameters(参数,网络中对应的参数)。
#coding:utf8
import torch
import torchvision
import torch.nn as nn
from torch.autograd import Variable
import torchvision.models as models
import numpy as np
##usage: add to train.py or test.py: misc.print_model_parm_nums(model)
## misc.print_model_parm_flops(model,inputs)
def print_model_parm_nums(model):
total = sum([param.nelement() for param in model.parameters()])
print(' + Number of params: %.2f(e6)' % (total / 1e6))
def print_model_parm_flops(model,input):
# prods = {}
# def save_prods(self, input, output):
# print 'flops:{}'.format(self.__class__.__name__)
# print 'input:{}'.format(input)
# print '_dim:{}'.format(input[0].dim())
# print 'input_shape:{}'.format(np.prod(input[0].shape))
# grads.append(np.prod(input[0].shape))
prods = {}
def save_hook(name):
def hook_per(self, input, output):
# print 'flops:{}'.format(self.__class__.__name__)
# print 'input:{}'.format(input)
# print '_dim:{}'.format(input[0].dim())
# print 'input_shape:{}'.format(np.prod(input[0].shape))
# prods.append(np.prod(input[0].shape))
prods[name] = np.prod(input[0].shape)
# prods.append(np.prod(input[0].shape))
return hook_per
list_1=[]
def simple_hook(self, input, output):
list_1.append(np.prod(input[0].shape))
list_2={}
def simple_hook2(self, input, output):
list_2['names'] = np.prod(input[0].shape)
multiply_adds = False
list_conv=[]
def conv_hook(self, input, output):
batch_size, input_channels, input_time, input_height, input_width = input[0].size()
output_channels, output_time, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size[0] * self.kernel_size[1] * self.kernel_size[2] *(self.in_channels / self.groups) * (2 if multiply_adds else 1)
bias_ops = 1 if self.bias is not None else 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_time * output_height * output_width
list_conv.append(flops)
list_linear=[]
def linear_hook(self, input, output):
batch_size = input[0].size(0) if input[0].dim() == 2 else 1
weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
bias_ops = self.bias.nelement()
flops = batch_size * (weight_ops + bias_ops)
list_linear.append(flops)
list_bn=[]
def bn_hook(self, input, output):
list_bn.append(input[0].nelement())
list_fc=[]
def fc_hook(self, input, output):
list_bn.append(input[0].nelement())
list_relu=[]
def relu_hook(self, input, output):
list_relu.append(input[0].nelement())
list_pooling=[]
#def pooling_hook(self, input, output):
# batch_size, input_channels, input_time,input_height, input_width = input[0].size()
# output_channels, output_time, output_height, output_width = output[0].size()
# kernel_ops = self.kernel_size * self.kernel_size*self.kernel_size
#bias_ops = 0
#params = output_channels * (kernel_ops + bias_ops)
#flops = batch_size * params * output_height * output_width * output_time
#list_pooling.append(flops)
def foo(net):
childrens = list(net.children())
if not childrens:
if isinstance(net, torch.nn.Conv3d):
# net.register_forward_hook(save_hook(net.__class__.__name__))
# net.register_forward_hook(simple_hook)
# net.register_forward_hook(simple_hook2)
net.register_forward_hook(conv_hook)
if isinstance(net, torch.nn.Linear):
net.register_forward_hook(linear_hook)
if isinstance(net, torch.nn.BatchNorm3d):
net.register_forward_hook(bn_hook)
if isinstance(net, torch.nn.ReLU):
net.register_forward_hook(relu_hook)
if isinstance(net, torch.nn.ReLU):
net.register_forward_hook(relu_hook)
#if isinstance(net, torch.nn.MaxPool3d) or isinstance(net, torch.nn.AvgPool2d):
# net.register_forward_hook(pooling_hook)
return
for c in childrens:
foo(c)
foo(model)
output = model(input)
total_flops = (sum(list_conv)+sum(list_linear))#+sum(list_bn)+sum(list_relu))
print(' + Number of FLOPs: %.5f(e9)' % (total_flops / 1e9))
上面代码经测试已经适配到1.0版本,用法直接定义上部分两个函数即可.
问题已经解决,因为当时我们跑的是8帧的,所以说相对的time这一块会有所变化,也就是说实际上的得到的比较大的那个数是因为我们现在用的是32帧,除以4就可以得到之前的对应数字。
实际上算的时候batchsize设置默认为1的时候,并不算整体的数据的计算量。
疑点:
- 如果是计算maxpooling的时候是否需要加进去?因为maxpooling实际上只是找到区域最大的一块数。
- 如果是计算interpolation的话应该怎么计算其中的flops?
基础知识参考这篇文章
上面这篇讲的已经很好了,对于视频的扩展到conv3d我们也已经把他进行改进了。
基础知识这里面也有讲到。
NVIDIA给出的解释也有一些参考价值。