推荐系统正负样本构造

推荐系统正负样本构造

  1. 在feed场景中,使用曝光(展示)日志时,应该选择APP的SDK埋点的日志,而不是服务器Web接口返回的日志,因为Web接口返回的日志中的后果是会增加很多无效的负样本。举个例子,Web接口每次返回10条数据,但是APP屏幕最多只能展现3条数据,剩下的7条数据需要用户在feed中滑动屏幕后,才算真正的曝光,但很多用户可能并不会滑动屏幕或者滑动屏幕幅度较小,导致剩下的7条数据并未真正在APP上曝光。

  2. 针对同一个内容在不同时间对同一个用户曝光多次的情况,这时候训练集中可能会出现同一用户对同一内容点击与不点击并存的情况,如果多次曝光的间隔非常短,考虑只使用其中的一次曝光数据。

  3. 根据 youtube 的早期论文中描述,他们为了避免高度活跃用户对loss的影响,在训练集中对每个用户提取相同数量的训练样本。

  4. 根据《美团机器学习实战》书中所说,它们在 feed 场景中采用了Skip Above的方式来提高效果。具体来讲就是根据用户最后一次点击行为的位置,过滤掉最后一次点击之后的展示,可以认为用户没有看到,也可以保留最后一次点击之后的少数几个。

  5. 过滤异常数据,如爬虫数据

  6. 可以考虑去除只有曝光但是没有点击操作的用户样本(也就是有的用户只有负样本,没有正样本),不过去除的话,那模型就只能学习到活跃用户或者有意向用户的行为习惯,这就导致线下数据与线上数据分布有偏,所以需要根据线上A/B测试的效果来决定最终是否需要去除

特征和label的构造方式

最后说一点关于生成训练样本的方式,尽可能地采用线上模型预测样本时刻的特征作为之后训练样本中的数据,而不是使用离线回溯的方式去拼接训练样本中的各个特征,这就要求当线上模型在预测时,需要将喂给模型的特征做一次落地,比如上传到kafka,后续再由相应程序进行解析生成之后的训练样本。

参考:https://www.zhihu.com/question/324986054

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容