【码农翻身】HDFS的来龙去脉

日志分析

比如说现在给你一个活:日志分析,一个日志大概有几十兆,而且每一行都很类似,比如

212.86.142.33 – - [20/Mar/2017:10:21:41 +0800] “GET / HTTP/1.1″ 200 986 “http://www.baidu.com/” “Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; )"

可以看出这些日志是从Web服务器里面产生的,包含了

  • 客户端IP

  • 访问时间

  • 请求的URL

  • 返回的状态

  • referer

  • User Agent

现在我们需要统计,一天之内

  • 每个页面的访问量(PV)

  • 独立的IP数

  • 用户最喜欢搜索的前10个关键字

最简单的就是使用cat , awk等小工具来做,或者使用python,方式是把每一行文本分割为一个一个的字段,然后分组,计算。

那么存在什么样的问题呢?一个程序就只能干这样一种事情,不灵活,扩展性不好。

那么可不可以把分割好的字段写入数据库表呢?比如access_log(id,ip,timestamp,url,status,referer,user_agent)这样的数据库,然后就可以使用数据库的group功能和count功能了。

image.png

分布式

问题就是如今互联网发展太快,用户量访问暴增,日志量大大增加,每小时都能产生好几个G,所以数据库根本就放不下了,甚至说Web服务器也放不下了。

一台机器,一个硬盘,读取速度是75M/s,那么需要10天才能读完100T的内容。

但是如果有100个硬盘,并行读取的速度可达75G/s,几十分钟就可以把100T的数据读出来了。

所以可以使用分布式存储的方法。

image.png

但是分布式不是简单的添加机器,

  • 当机器的硬盘坏了怎么办?

  • 热门文件怎么办

  • 如果访问量特别大,能不能分散到其他的机器上?

那么怎么解决呢:

  • 为了高可靠性,我们可以做备份,把每个文件都存三个备份,这样坏的可能性就降低了。

  • 日志虽然没有热门文件,但是考虑一下通用性,可以让分布式文件系统处理别的东西吧。

    我们可以把文件切分成小块,然后分散到各个机器上。备份的时候,把每个小块都备份三份即可。


    image.png

    这样就不会影响热门文件的读取了。

    不过既然分块了,那么客户端读取岂不是变得更麻烦呢?如果由客户端来保存每个块存放在哪一个主机上,岂不是很烦人?

    所以还可以再做抽象,分布式文件系统可以提供一个抽象层,让文件分块对客户端保持透明,客户端不需要知道文件是怎么分块的,也不需要知道分块是存放在什么样的服务器上的,他只需要知道一个文件的路径/logs/log1,然后就可以读写了,里面的细节自有分布式文件系统来处理。

image.png

这样提供一个中间层,就可以为客户端提供一个简单的视图,尽可能让他们像访问本地文件一样来使用这个分布式文件系统呢。

这种分布式文件系统存在一个问题,就是只适合在文件末尾不断的追加,如果想随机地读写,则比较麻烦。

所以这种系统最合适一次写入,多次读取的场景。

架构图

我们之前说过,客户端不可能保存数据块与服务器之间的对应关系,那么文件分成了哪些块,保存在什么样的服务器,服务器上有多大的空间,有哪些服务器等信息,都可以统称为Metadata(元数据),可以使用一个专门的服务器来存储,也就是Master节点,可以称为NameNode

image.png

那么存储数据的服务器就叫DataNode。

然后还需要再提供一个Client,它可以查询NameNode,获得文件块存放在哪些服务器上。其他的应用程序可以先访问这个客户端,然后有这个客户端来获得相应的信息。

那么如果某个DataNode挂了或者某个DataNode的磁盘空间不足,一定要通知NameNode,所以需要DataNode与NameNode维持一条心跳线,也就是和的需要为他们设计一套通信协议。

分布式系统就是这样,机器坏了,网断了,都就很大的挑战,需要在普通的机器上实现高可靠性是一件很难的事情。

接下来就是更细化的流程

读过程

要想读一个文件,最容易想到的流程是,客户端把文件名和路径告诉NameNode,然后让它返回所有的数据。但是这样存在的最大的问题是,所有的数据流都要经过NameNode,那么这个节点一定会成为瓶颈的。

如果是多个客户端并发访问,当数据量到了TB甚至PB级的时候,不堪设想。

那么可以读取文件的时候,NameNode只需要返回文件的分块以及分块所在的DataNode,这样客户端就可以选择一个DataNode来读取文件呢。

但是一个分块会存三份,那么选哪一份呢?

当然是选择最近的呢?那么怎么定义距离呢?

  • 客户端与DataNode是一个机器,距离为0

  • 客户端与DataNode是同一个机架的不同机器,距离为2

  • 客户端与DataNode是同一个数据中心的不同机架,距离为4 。

所以程序难度提高了好几个数量级


image.png

写入文件

写入文件的流程也类似,NameNode会找到可以写数据的三个DataNode,然后把信息返回给客户端,由客户端向这三个DataNode发起写操作。

不过,如果有10G的文件,难道让客户端向DataNode写3次吗?当然不,可以把三个DataNode组成一个PipeLine,数据只需要发给第一个DataNode,然后它会自动备份给第二个节点,然后是第三个节点。

image.png

所以说客户端其实只发出了一次写请求,然后后端的数据复制由DataNode合作完成。

这个分布式文件系统就叫Hadoop Distributed File System,HDFS,这样就可以使用廉价的X86服务器存储海量日志。

那么我们当然可以写个程序来读取这些文件,统计各种各样的用户访问呢?但是这些程序需要放在哪里呢?如果是只是放到HDFS之外的某台机器上处理,面对100T的数据,处理得非常慢,所以可以把计算架构也做成分布式的,并且让计算程序尽可能的靠近数据,这样就快多了。这就是MapReduce

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容

  • 首先,我们在使用前先看看HDFS是什麽?这将有助于我们是以后的运维使用和故障排除思路的获得。 HDFS采用mast...
    W_Bousquet阅读 4,194评论 0 2
  • hadoop HDFS原理解析01 HDFS架构•NameNode•DataNode•Sencondary Nam...
    白菜青萝卜阅读 2,723评论 2 30
  • 先思考问题 我们处在一个大数据的时代已经是不争的事实,这主要表现在数据源多且大,如互联网数据,人们也认识到数据里往...
    墙角儿的花阅读 7,359评论 0 9
  • 每个人来到这个世界上,很多东西都是不公平的,财富,有些人一生下来就含着金钥匙,有些人却是奋斗一生要没有那样的生活。...
    林多多1995阅读 201评论 0 0
  • 你知道喜东东吗?你听说过德善吗?那么崔泽呢? 如果你听过其一,那么你一定曾经被他们浓浓的青春气息感染过… 最直击心...
    雪聆灵阅读 252评论 0 0