一、Category的实现原理
1、Category编译之后的底层结构是 struct _category_t ,里面存储着分类的对象方法、类方法、属性、协议信息
#import "QLStudent+test.h"
@implementation QLStudent (test)
- (void)study {
}
+ (void)attendClass {
}
@end
将上述代码转成C++代码
Category编译之后的底层结构
struct _category_t {
const char *name;
struct _class_t *cls;
const struct _method_list_t *instance_methods;
const struct _method_list_t *class_methods;
const struct _protocol_list_t *protocols;
const struct _prop_list_t *properties;
};
// 与结构体 struct _category_t 中的成员一一对应
static struct _category_t _OBJC_$_CATEGORY_QLStudent_$_test __attribute__ ((used, section ("__DATA,__objc_const"))) =
{
"QLStudent",
0, // &OBJC_CLASS_$_QLStudent,
(const struct _method_list_t *)&_OBJC_$_CATEGORY_INSTANCE_METHODS_QLStudent_$_test,
(const struct _method_list_t *)&_OBJC_$_CATEGORY_CLASS_METHODS_QLStudent_$_test,
0,
0,
};
// 分类中定义的对象方法
static struct /*_method_list_t*/ {
unsigned int entsize; // sizeof(struct _objc_method)
unsigned int method_count;
struct _objc_method method_list[1];
} _OBJC_$_CATEGORY_INSTANCE_METHODS_QLStudent_$_test __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_objc_method),
1,
{{(struct objc_selector *)"study", "v16@0:8", (void *)_I_QLStudent_test_study}}
};
// 分类中定义的类方法
static struct /*_method_list_t*/ {
unsigned int entsize; // sizeof(struct _objc_method)
unsigned int method_count;
struct _objc_method method_list[1];
} _OBJC_$_CATEGORY_CLASS_METHODS_QLStudent_$_test __attribute__ ((used, section ("__DATA,__objc_const"))) = {
sizeof(_objc_method),
1,
{{(struct objc_selector *)"attendClass", "v16@0:8", (void *)_C_QLStudent_test_attendClass}}
};
2、在程序运行的时候,通过runtime动态将category的数据合并到类信息中(类对象、元类对象中)
源码 objc-runtime-new.mm
// 重新方法化
static void remethodizeClass(Class cls)
{
category_list *cats;
bool isMeta;
runtimeLock.assertWriting();
isMeta = cls->isMetaClass();
// Re-methodizing: check for more categories
if ((cats = unattachedCategoriesForClass(cls, false/*not realizing*/))) {
if (PrintConnecting) {
_objc_inform("CLASS: attaching categories to class '%s' %s",
cls->nameForLogging(), isMeta ? "(meta)" : "");
}
// cls:类对象、元类对象
// cats:分类列表
attachCategories(cls, cats, true /*flush caches*/);
free(cats);
}
}
// cls:类对象、元类对象
// cats:分类列表
static void
attachCategories(Class cls, category_list *cats, bool flush_caches)
{
if (!cats) return;
if (PrintReplacedMethods) printReplacements(cls, cats);
// 判断是类对象还是元类对象
bool isMeta = cls->isMetaClass();
// fixme rearrange to remove these intermediate allocations
// 方法数组
method_list_t **mlists = (method_list_t **)
malloc(cats->count * sizeof(*mlists));
// 属性数组
property_list_t **proplists = (property_list_t **)
malloc(cats->count * sizeof(*proplists));
// 协议数组
protocol_list_t **protolists = (protocol_list_t **)
malloc(cats->count * sizeof(*protolists));
// Count backwards through cats to get newest categories first
int mcount = 0;
int propcount = 0;
int protocount = 0;
int i = cats->count;
bool fromBundle = NO;
while (i--) {
// 取出某个分类
auto& entry = cats->list[i];
// 取出分类中的对象方法或者类方法
method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
if (mlist) {
mlists[mcount++] = mlist;
fromBundle |= entry.hi->isBundle();
}
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi);
if (proplist) {
proplists[propcount++] = proplist;
}
protocol_list_t *protolist = entry.cat->protocols;
if (protolist) {
protolists[protocount++] = protolist;
}
}
// 得到类对象或者元类对象里面的数据
auto rw = cls->data();
prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
// 将所有分类的对象方法(类方法)附加到类对象(元类对象)的方法列表中
rw->methods.attachLists(mlists, mcount);
free(mlists);
if (flush_caches && mcount > 0) flushCaches(cls);
// 将所有分类的属性附加到类对象的属性列表中
rw->properties.attachLists(proplists, propcount);
free(proplists);
// 将所有分类的协议附加到类对象的协议列表中
rw->protocols.attachLists(protolists, protocount);
free(protolists);
}
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;
if (hasArray()) {
// many lists -> many lists
uint32_t oldCount = array()->count;
uint32_t newCount = oldCount + addedCount;
// 扩容
setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
array()->count = newCount;
// array()->lists 原来的方法列表
// 将原来的方法列表移动到后面
memmove(array()->lists + addedCount, array()->lists, oldCount * sizeof(array()->lists[0]));
// addedLists 所有分类的方法列表
// 将分类的方法列表拷贝到原来的方法列表的位置
memcpy(array()->lists, addedLists, addedCount * sizeof(array()->lists[0]));
}
else if (!list && addedCount == 1) {
// 0 lists -> 1 list
list = addedLists[0];
}
else {
// 1 list -> many lists
List* oldList = list;
uint32_t oldCount = oldList ? 1 : 0;
uint32_t newCount = oldCount + addedCount;
setArray((array_t *)malloc(array_t::byteSize(newCount)));
array()->count = newCount;
if (oldList) array()->lists[addedCount] = oldList;
memcpy(array()->lists, addedLists, addedCount * sizeof(array()->lists[0]));
}
}
Category的加载处理过程:
通过runtime加载某个类的所有Category数据
把所有Category的方法、属性、协议数据,合并到一个大数组中
后面参与编译的Category数据,会在数组的前面
将合并后的分类数据(方法、属性、协议),插入到类原来数据的前面
如果类、分类中有相同的方法,那么会先调用分类中的方法
多个分类的话会按后编译先调用
3、Category和Class Extension的区别是什么?
Class Extension在编译的时候,它的数据就已经包含在类信息中
Category是在运行时,才会将数据合并到类信息中
二、+load 方法
1、为什么类、分类里面的 +load 方法都会调用?
因为 +load 是通过函数指针直接调用
Runtime源码:objc-loadmethod.mm
// 调用类的 +load 方法
static void call_class_loads(void)
{
int i;
// Detach current loadable list.
struct loadable_class *classes = loadable_classes;
int used = loadable_classes_used;
loadable_classes = nil;
loadable_classes_allocated = 0;
loadable_classes_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
Class cls = classes[i].cls;
// 取出类的 +load 方法的函数地址
load_method_t load_method = (load_method_t)classes[i].method;
if (!cls) continue;
if (PrintLoading) {
_objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
}
// 通过函数地址直接调用
(*load_method)(cls, SEL_load);
}
// Destroy the detached list.
if (classes) free(classes);
}
// 调用分类的 +load 方法
static bool call_category_loads(void)
{
int i, shift;
bool new_categories_added = NO;
// Detach current loadable list.
struct loadable_category *cats = loadable_categories;
int used = loadable_categories_used;
int allocated = loadable_categories_allocated;
loadable_categories = nil;
loadable_categories_allocated = 0;
loadable_categories_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
Category cat = cats[i].cat;
// 取出某个分类的 +load 方法的函数地址
load_method_t load_method = (load_method_t)cats[i].method;
Class cls;
if (!cat) continue;
cls = _category_getClass(cat);
if (cls && cls->isLoadable()) {
if (PrintLoading) {
_objc_inform("LOAD: +[%s(%s) load]\n",
cls->nameForLogging(),
_category_getName(cat));
}
// 通过函数地址直接调用
(*load_method)(cls, SEL_load);
cats[i].cat = nil;
}
}
}
2、+load方法出现继承时的调用过程?
Runtime源码:objc-loadmethod.mm
void call_load_methods(void)
{
static bool loading = NO;
bool more_categories;
loadMethodLock.assertLocked();
// Re-entrant calls do nothing; the outermost call will finish the job.
if (loading) return;
loading = YES;
void *pool = objc_autoreleasePoolPush();
do {
// 1. Repeatedly call class +loads until there aren't any more
// 先调用类的 +load 方法
while (loadable_classes_used > 0) {
call_class_loads();
}
// 2. Call category +loads ONCE
// 再调用分类的 +load 方法
more_categories = call_category_loads();
// 3. Run more +loads if there are classes OR more untried categories
} while (loadable_classes_used > 0 || more_categories);
objc_autoreleasePoolPop(pool);
loading = NO;
}
调用方式:+load 方法是通过函数指针直接调用
调用时刻:+load 方法会在runtime加载类、分类的时候调用,每个类、分类的 +load,在程序运行过程中只调用一次
调用顺序:
1> 先调用类的 +load
按照编译先后顺序调用(先编译,先调用)
调用子类的 +load 之前会先调用父类的 +load
2> 再调用分类的 +load
按照编译先后顺序调用(先编译,先调用)
三、+initialize 方法
Runtime源码:objc-runtime-new.mm
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
......
// 当前类需要初始化并且当前类还未初始化
if (initialize && !cls->isInitialized()) {
runtimeLock.unlockRead();
_class_initialize (_class_getNonMetaClass(cls, inst));
runtimeLock.read();
// If sel == initialize, _class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
......
}
Runtime源码:objc-initialize.mm
/***********************************************************************
* class_initialize. Send the '+initialize' message on demand to any
* uninitialized class. Force initialization of superclasses first.
**********************************************************************/
void _class_initialize(Class cls)
{
assert(!cls->isMetaClass());
Class supercls;
bool reallyInitialize = NO;
// Make sure super is done initializing BEFORE beginning to initialize cls.
// See note about deadlock above.
supercls = cls->superclass;
// 如果存在父类,并且父类没有初始化,那就先初始化父类
if (supercls && !supercls->isInitialized()) {
_class_initialize(supercls);
}
......
if (reallyInitialize) {
......
#if __OBJC2__
@try
#endif
{
// 调用 +initialize 方法
callInitialize(cls);
if (PrintInitializing) {
_objc_inform("INITIALIZE: thread %p: finished +[%s initialize]",
pthread_self(), cls->nameForLogging());
}
}
......
}
......
}
// +initialize 方法最终是根据objc_msgSend进行调用的
void callInitialize(Class cls)
{
((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize);
asm("");
}
调用方式:+initialize 方法是通过objc_msgSend调用
调用时刻:+initialize方法会在类第一次接收到消息时调用
调用顺序:
1>先调用父类的 +initialize 方法,再调用子类的 +initialize 方法
2>先初始化父类,再初始化子类,每个类只会初始化1次
3>如果子类没有实现 +initialize,会调用父类的 +initialize(所以父类的 +initialize 可能会被调用多次)
4>如果分类实现了 +initialize,就覆盖类本身的 +initialize 调用