一、什么是ThreadPoolExecutor
ThreadPoolExecutor是Java 1.5开始引入的,作为线程存放的集合池子——线程池,主要是为了解决:
- 重用线程资源,降低线程创建和销毁的开销;
- 集中维护和管理多个线程;
二、编码体验
JDK已经为我们封装好了线程池的工具类Executors,提供了几个便利的静态方法,简单列举几个;
- newFixedThreadPool:定长线程池;
- newSingleThreadExecutor:单线程的线程池;
- newCachedThreadPool:可缓存的线程池;
- newScheduledThreadPool:可延迟执行或周期执行线程池;
这里采用newFixedThreadPool作为例子,两种线程池提交方式为例:
ExecutorService service = Executors.newFixedThreadPool(1);
service.submit(() -> System.out.println("submit提交,开启多线程..."));
service.execute(() -> System.out.println("execute提交,开启多线程..."));
这样就创建了长度为1的线程池,并且分别用submit和execute两种方式提交了任务,可以看出不需要我们手动new新的线程,也不需要我们手动start线程。
三、源码剖析
为什么定义好了线程池submit或execute了任务就可以自动执行,jdk底层又是如何实现的呢?
根据上面Executors的几个静态方法(除了newScheduledThreadPool),最终都是指向ThreadPoolExecutor的构造方法:
1、构造方法
/**
* Creates a new {@code ThreadPoolExecutor} with the given initial
* parameters.
*
* @param corePoolSize the number of threads to keep in the pool, even
* if they are idle, unless {@code allowCoreThreadTimeOut} is set
* @param maximumPoolSize the maximum number of threads to allow in the
* pool
* @param keepAliveTime when the number of threads is greater than
* the core, this is the maximum time that excess idle threads
* will wait for new tasks before terminating.
* @param unit the time unit for the {@code keepAliveTime} argument
* @param workQueue the queue to use for holding tasks before they are
* executed. This queue will hold only the {@code Runnable}
* tasks submitted by the {@code execute} method.
* @param threadFactory the factory to use when the executor
* creates a new thread
* @param handler the handler to use when execution is blocked
* because the thread bounds and queue capacities are reached
* @throws IllegalArgumentException if one of the following holds:<br>
* {@code corePoolSize < 0}<br>
* {@code keepAliveTime < 0}<br>
* {@code maximumPoolSize <= 0}<br>
* {@code maximumPoolSize < corePoolSize}
* @throws NullPointerException if {@code workQueue}
* or {@code threadFactory} or {@code handler} is null
*/
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
构造方法的参数还是比较多的,根据源码注释逐个分析:
corePoolSize
核心线程数,除非设置了allowCoreThreadTimeOut,否则需要保留在池中的线程数大小,即使这些线程处于空闲状态;maximumPoolSize
允许线程池中最大的线程数量;keepAliveTime
当线程数量超过了核心线程数,多出闲置的线程在等待新任务的最长时间;unit
keepAliveTime的时间单位;workQueue
执行任务前用于保存任务的队列,该队列仅仅包含提交的Runnable的任务;threadFactory
executor创建新线程使用的线程工厂;handler
线程池饱和处理策略;
构造方法具体只是做了参数非空校验,以及全局变量的初始化,接下来看看execute方法:
2、execute
/**
* Executes the given task sometime in the future. The task
* may execute in a new thread or in an existing pooled thread.
*
* If the task cannot be submitted for execution, either because this
* executor has been shutdown or because its capacity has been reached,
* the task is handled by the current {@code RejectedExecutionHandler}.
*
* @param command the task to execute
* @throws RejectedExecutionException at discretion of
* {@code RejectedExecutionHandler}, if the task
* cannot be accepted for execution
* @throws NullPointerException if {@code command} is null
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
源码注释已经说明得很清楚,线程池工作流程分为3步:
- 如果当前线程池的线程数量小于corePoolSize,那么尝试新建一个线程执行该任务,会通过检查当前状态runState和线程池线程数量workerCount来进行原子操作addWorker,根据返回值决定操作成功与否;
- 否则检查当前任务是否可以排队(大于corePoolSize,小于maximumPoolSize),就算确认可以添加到workQueue中排队等待,我们还是需要recheck重新检查当先线程池状态,可能由于之前的工作线程已经died或者当前线程池shutdown;
- 如果当前任务都无法排队(等待队列已满),那么尝试新建一个线程执行该任务,如果仍然失败(线程池数量大于maximumPoolSize),那么执行拒绝策略reject;
执行逻辑还是比较复杂的,因为添加队列、修改状态均使用了无锁原子操作,附以图示:
ok,回到execute方法源码来,特别注意这个全局变量ctl
,她便是线程池的数据核心。
3、ctl
/**
* The main pool control state, ctl, is an atomic integer packing
* two conceptual fields
* workerCount, indicating the effective number of threads
* runState, indicating whether running, shutting down etc
*
* In order to pack them into one int, we limit workerCount to
* (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
* billion) otherwise representable. If this is ever an issue in
* the future, the variable can be changed to be an AtomicLong,
* and the shift/mask constants below adjusted. But until the need
* arises, this code is a bit faster and simpler using an int.
*
* The workerCount is the number of workers that have been
* permitted to start and not permitted to stop. The value may be
* transiently different from the actual number of live threads,
* for example when a ThreadFactory fails to create a thread when
* asked, and when exiting threads are still performing
* bookkeeping before terminating. The user-visible pool size is
* reported as the current size of the workers set.
*
* The runState provides the main lifecycle control, taking on values:
*
* RUNNING: Accept new tasks and process queued tasks
* SHUTDOWN: Don't accept new tasks, but process queued tasks
* STOP: Don't accept new tasks, don't process queued tasks,
* and interrupt in-progress tasks
* TIDYING: All tasks have terminated, workerCount is zero,
* the thread transitioning to state TIDYING
* will run the terminated() hook method
* TERMINATED: terminated() has completed
*
* The numerical order among these values matters, to allow
* ordered comparisons. The runState monotonically increases over
* time, but need not hit each state. The transitions are:
*
* RUNNING -> SHUTDOWN
* On invocation of shutdown(), perhaps implicitly in finalize()
* (RUNNING or SHUTDOWN) -> STOP
* On invocation of shutdownNow()
* SHUTDOWN -> TIDYING
* When both queue and pool are empty
* STOP -> TIDYING
* When pool is empty
* TIDYING -> TERMINATED
* When the terminated() hook method has completed
*
* Threads waiting in awaitTermination() will return when the
* state reaches TERMINATED.
*
* Detecting the transition from SHUTDOWN to TIDYING is less
* straightforward than you'd like because the queue may become
* empty after non-empty and vice versa during SHUTDOWN state, but
* we can only terminate if, after seeing that it is empty, we see
* that workerCount is 0 (which sometimes entails a recheck -- see
* below).
*/
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
第一句话就概括了ctl,The main pool control state, ctl, is an atomic integer packing two conceptual fields,workerCount,runState。这个AtomicInteger类型的变量,存储了工作线程数量和线程池状态两类数据,那么是怎么打包到一个变量中呢?
后面也有解释说明,In order to pack them into one int, we limit workerCount to (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2 billion) otherwise representable,int类型为32位,低29位用于存储workCount而不是全部位数,高3位便用于存储runState。
先用二级制表示出CAPACITY的存储:
0001 1111 1111 1111 1111 1111 1111 1111
然后举个例子,一个RUNNING的线程池有5个工作线程,那么用ctl来表示为:
1110 0000 0000 0000 0000 0000 0000 0101
再回来看runStateOf()
和workerCountOf()
、ctlOf()
三个方法,变得清晰多了。
既然已经清楚了ctl的工作原理,那么回到execute源码,分析下添加任务addWorker方法原理。
4、addWorker
/*
* Methods for creating, running and cleaning up after workers
*/
/**
* Checks if a new worker can be added with respect to current
* pool state and the given bound (either core or maximum). If so,
* the worker count is adjusted accordingly, and, if possible, a
* new worker is created and started, running firstTask as its
* first task. This method returns false if the pool is stopped or
* eligible to shut down. It also returns false if the thread
* factory fails to create a thread when asked. If the thread
* creation fails, either due to the thread factory returning
* null, or due to an exception (typically OutOfMemoryError in
* Thread.start()), we roll back cleanly.
*
* @param firstTask the task the new thread should run first (or
* null if none). Workers are created with an initial first task
* (in method execute()) to bypass queuing when there are fewer
* than corePoolSize threads (in which case we always start one),
* or when the queue is full (in which case we must bypass queue).
* Initially idle threads are usually created via
* prestartCoreThread or to replace other dying workers.
*
* @param core if true use corePoolSize as bound, else
* maximumPoolSize. (A boolean indicator is used here rather than a
* value to ensure reads of fresh values after checking other pool
* state).
* @return true if successful
*/
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
源码有点长,但我还是全部贴出来了,方便后续整体回顾,细细品读还是别有一番滋味,下面逐段分析下。
开头定义了一个标签retry,用于内层嵌套for循环的控制,然后是一段简单的校验逻辑,对当前线程池状态、提交的任务及阻塞队列进行校验;
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
然后是无限循环CAS增加workerCount,很有意思的一段代码;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
当CAS执行成功,即break到开头的retry标签,进行后面的操作。否则的话,说明执行期间ctl发生了改变,那么重新获取ctl,并且判断当前状态是否改变。如果runState没有改变继续执行内层for循环,没有必要执行外层循环初始化变量和参数校验逻辑,如果改变了就continue到retry标签,完全重来一次。
当CAS成功后,代表当前线程池workerCount已经增加了,那么现在便需要创建新的线程来执行了:
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
注意这里两个finnaly,第一个是ReetrantLock的释放,第二个是addWorker的校验回滚,当出现线程池shutdown,或者是新建的线程非存活状态,都需要回滚之前增加workerCount的操作,也就是之前CAS的操作,否则便start启动创建的线程并初始化两个bool标识位,附上addWorkerFailed的源码:
/**
* Rolls back the worker thread creation.
* - removes worker from workers, if present
* - decrements worker count
* - rechecks for termination, in case the existence of this
* worker was holding up termination
*/
private void addWorkerFailed(Worker w) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (w != null)
workers.remove(w);
decrementWorkerCount();
tryTerminate();
} finally {
mainLock.unlock();
}
}
有必要看下workers的定义了;
/**
* Set containing all worker threads in pool. Accessed only when
* holding mainLock.
*/
private final HashSet<Worker> workers = new HashSet<Worker>();
Set containing all worker threads in pool. Accessed only when holding mainLock.线程池中所有工作线程的集合,只有在持有mainLock锁的情况下才能访问该workers。这也就印证了每次对workers的操作,都需要获取锁mainLock.lock();
了。
5、Worker
/**
* Class Worker mainly maintains interrupt control state for
* threads running tasks, along with other minor bookkeeping.
* This class opportunistically extends AbstractQueuedSynchronizer
* to simplify acquiring and releasing a lock surrounding each
* task execution. This protects against interrupts that are
* intended to wake up a worker thread waiting for a task from
* instead interrupting a task being run. We implement a simple
* non-reentrant mutual exclusion lock rather than use
* ReentrantLock because we do not want worker tasks to be able to
* reacquire the lock when they invoke pool control methods like
* setCorePoolSize. Additionally, to suppress interrupts until
* the thread actually starts running tasks, we initialize lock
* state to a negative value, and clear it upon start (in
* runWorker).
*/
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
// Lock methods
//
// The value 0 represents the unlocked state.
// The value 1 represents the locked state.
protected boolean isHeldExclusively() {
return getState() != 0;
}
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
可以看到Worker类是ThreadPoolExecutor的内部类,并且实现了Runnable接口,继承自AbstractQueuedSynchronizer,仔细看她的构造方法,将自己的实例作为参数执行this.thread = getThreadFactory.newThread(this);
,所以结合之前的addWorker方法中,执行t.start();
,因此实际就是触发的Worker的run方法也就是外层runWorker方法(ThreadPoolExecutor的方法);
理所当然,这个runWorker方法,才是线程池中线程执行的核心;
6、runWorker
/**
* Main worker run loop. Repeatedly gets tasks from queue and
* executes them, while coping with a number of issues:
*
* 1. We may start out with an initial task, in which case we
* don't need to get the first one. Otherwise, as long as pool is
* running, we get tasks from getTask. If it returns null then the
* worker exits due to changed pool state or configuration
* parameters. Other exits result from exception throws in
* external code, in which case completedAbruptly holds, which
* usually leads processWorkerExit to replace this thread.
*
* 2. Before running any task, the lock is acquired to prevent
* other pool interrupts while the task is executing, and then we
* ensure that unless pool is stopping, this thread does not have
* its interrupt set.
*
* 3. Each task run is preceded by a call to beforeExecute, which
* might throw an exception, in which case we cause thread to die
* (breaking loop with completedAbruptly true) without processing
* the task.
*
* 4. Assuming beforeExecute completes normally, we run the task,
* gathering any of its thrown exceptions to send to afterExecute.
* We separately handle RuntimeException, Error (both of which the
* specs guarantee that we trap) and arbitrary Throwables.
* Because we cannot rethrow Throwables within Runnable.run, we
* wrap them within Errors on the way out (to the thread's
* UncaughtExceptionHandler). Any thrown exception also
* conservatively causes thread to die.
*
* 5. After task.run completes, we call afterExecute, which may
* also throw an exception, which will also cause thread to
* die. According to JLS Sec 14.20, this exception is the one that
* will be in effect even if task.run throws.
*
* The net effect of the exception mechanics is that afterExecute
* and the thread's UncaughtExceptionHandler have as accurate
* information as we can provide about any problems encountered by
* user code.
*
* @param w the worker
*/
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
Main worker run loop. Repeatedly gets tasks from queue and executes them, while coping with a number of issues,主要Worker进行循环,重复从队列中获取task任务并执行她们,同时处理一些问题;
值得注意的是这里task.run();
前后两个处理方法beforeExecute(wt, task);
和afterExecute(task, thrown);
,都是两个空的方法,方便我们自定义线程池进行拓展;
其实看到这里还没有涉及到等待队列queue的数据交互,但是没关系,结合前面execute方法的解析,也有个一知半解,这里task执行完并不会结束该线程,而是会从queue中获取等待的task,while (task != null || (task = getTask()) != null)
,第一个条件当然是worker本身的task任务,后面肯定是从队列中获取task了;
7、getTask
/**
* Performs blocking or timed wait for a task, depending on
* current configuration settings, or returns null if this worker
* must exit because of any of:
* 1. There are more than maximumPoolSize workers (due to
* a call to setMaximumPoolSize).
* 2. The pool is stopped.
* 3. The pool is shutdown and the queue is empty.
* 4. This worker timed out waiting for a task, and timed-out
* workers are subject to termination (that is,
* {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
* both before and after the timed wait, and if the queue is
* non-empty, this worker is not the last thread in the pool.
*
* @return task, or null if the worker must exit, in which case
* workerCount is decremented
*/
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
这里有一行比较关键:
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
这个timed的值直接决定后面workQueue取值的方式,是采用poll还是take,区别便是前者具有队列取值可以指定阻塞await时长,而后者一直阻塞await等待,贴一段LinkedBlockingQueue的poll的代码;
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
E x = null;
int c = -1;
long nanos = unit.toNanos(timeout);
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
if (nanos <= 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
注意到while循环体里面的nanos = notEmpty.awaitNanos(nanos);
,结合之前timed的定义,就知道线程池里面工作线程的生命周期了,当allowCoreThreadTimeOut || wc > corePoolSize
为true是,该线程会从workQueue中取值并指定等待时长即构造方法中的keepAliveTime,超过该时长还是取不到task的话,getTask返回null,结束runWorker的while循环,线程结束;
顺便提及一句allowCoreThreadTimeOut默认是false,可以通过ThreadPoolExecutor的allowCoreThreadTimeOut方法修改默认值;
8、execute
分析到这里,也就差不多弄清楚了execute方法的第一步,但也是最重要的一步,接着execute方法来看,后面就变得简单多了,为了方便翻阅,重贴下execute方法(需要看源码注释的往上翻 ↑);
public void execute(Runnable command) {
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
若当前workerCount已经超过了corePoolSize,那么会执行到下面的入队offer操作,offer的返回值说明是否入队成功,取决于等待队列workQueue是否容量已满,然而Executors提供的好几个静态工厂生成的ThreadPoolExecutor的阻塞队列,都是new LinkedBlockingQueue<Runnable>()
,贴下LinkedBlockingQueue的构造方法;
/**
* Creates a {@code LinkedBlockingQueue} with a capacity of
* {@link Integer#MAX_VALUE}.
*/
public LinkedBlockingQueue() {
this(Integer.MAX_VALUE);
}
/**
* Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
*
* @param capacity the capacity of this queue
* @throws IllegalArgumentException if {@code capacity} is not greater
* than zero
*/
public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
last = head = new Node<E>(null);
}
默认容量是Integer.MAX_VALUE,也就是(2^31) - 1,所以这个默认阻塞队列有点难满,所以阿里Java规范也推荐手写线程池构造参数,加深理解;
回到上面execute流程,入队之后还做了一次recheck,这个recheck两个条件非常有必要,一是判断当前线程池状态,而是判断当前工作线程数是否为0,分别进行对应处理;
最后如果的确是队列已满,则继续执行addWorker方法,区别是传入的第二个参数为false,这个决定了workerCount的边界,是corePoolSize还是maximumPoolSize,若仍然执行失败则会进行reject处理,最后贴一下ThreadPoolExecutor默认的handler;
/**
* A handler for rejected tasks that throws a
* {@code RejectedExecutionException}.
*/
public static class AbortPolicy implements RejectedExecutionHandler {
/**
* Creates an {@code AbortPolicy}.
*/
public AbortPolicy() { }
/**
* Always throws RejectedExecutionException.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
* @throws RejectedExecutionException always
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() +
" rejected from " +
e.toString());
}
}
默认会抛出一个异常,当然我们也可以实现这个RejectedExecutionHandler接口进行我们reject的自定义需求。
四、结束语
其实很早就想到要写一篇线程池的源码分析,但由于各种原因写到一半被搁置了很久。最近工作轻松不少,当我重新开始窥探Java的奥秘,还真的发自内心地感叹起前辈们的思想,多么的深邃远见,自己积攒的不过是管中窥豹。
文章的编写顺序与自己翻阅源码的过程完全一致,就算一次性通读全文,也不会感觉到太大的思想跳跃。而且本着刨根问底的思想,我尽可能地贴出对应完整的源码,不会因为相关注释过长便落下。恰巧是这些源码中的注释,才是我觉得理解源码的最好帮助。