KM算法入门

萌萌的讲解
以下为部分摘取
  最大二分匹配:在一个二分图中找到P->q的一个匹配方案,使得匹配中的边数量不小于任何其他的匹配。
  完备二分匹配:在一个二分图中找到p->q的一个匹配方案,使得p中所有点出现在该匹配中。
  二分图的带权匹配:求出一个匹配集合,使得集合中边的权值之和最大或最小。
  二分图的最优匹配:为完备匹配,在此基础上,才要求匹配的边权值之和最大或最小。二分图的带权匹配与最优匹配不等价,也不互相包含。

KM算法实现求二分图的最优匹配。KM算法可以实现为O(N^3)。
[KM算法的几种转化]
  • KM算法是求最大权完备匹配,如果要求最小权完备匹配怎么办?方法很简单,只需将所有的边权值取其相反数,求最大权完备匹配,匹配的值再取相反数即可。
  • KM算法的运行要求是必须存在一个完备匹配,如果求一个最大权匹配(不一定完备)该如何办?依然很简单,把不存在的边权值赋为0。
  • KM算法求得的最大权匹配是边权值和最大,如果我想要边权之积最大,又怎样转化?还是不难办到,每条边权取自然对数,然后求最大和权匹配,求得的结果a再算出e^a就是最大积匹配。至于精度问题则没有更好的办法了。

KM算法的邻接矩阵模板:

const int MAXN = 210;
const int INF = 0x3f3f3f3f;

int love[MAXN][MAXN];   // 记录每个妹子和每个男生的好感度
int ex_girl[MAXN];      // 每个妹子的期望值
int ex_boy[MAXN];       // 每个男生的期望值
bool vis_girl[MAXN];    // 记录每一轮匹配匹配过的女生
bool vis_boy[MAXN];     // 记录每一轮匹配匹配过的男生
int match[MAXN];        // 记录每个男生匹配到的妹子 如果没有则为-1
int slack[MAXN];        // 记录每个汉子如果能被妹子倾心最少还需要多少期望值

int n,m;
bool dfs(int girl)
{
    vis_girl[girl] = true;

    for (int boy = 0; boy < m; ++boy) {

        if (vis_boy[boy]) continue; // 每一轮匹配 每个男生只尝试一次

        int gap = ex_girl[girl] + ex_boy[boy] - love[girl][boy];

        if (gap == 0) {  // 如果符合要求
            vis_boy[boy] = true;
            if (match[boy] == -1 || dfs( match[boy] )) {    // 找到一个没有匹配的男生 或者该男生的妹子可以找到其他人
                match[boy] = girl;
                return true;
            }
        } else {
            slack[boy] = min(slack[boy], gap);  // slack 可以理解为该男生要得到女生的倾心 还需多少期望值 取最小值 备胎的样子【捂脸
        }
    }

    return false;
}

int KM()
{
    memset(match, -1, sizeof match);    // 初始每个男生都没有匹配的女生
    memset(ex_boy, 0, sizeof ex_boy);   // 初始每个男生的期望值为0

    // 每个女生的初始期望值是与她相连的男生最大的好感度
    for (int i = 0; i < n; ++i) {
        ex_girl[i] = love[i][0];
        for (int j = 1; j < m; ++j) {
            ex_girl[i] = max(ex_girl[i], love[i][j]);
        }
    }

    // 尝试为每一个女生解决归宿问题
    for (int i = 0; i < n; ++i) {

        fill(slack, slack + m, INF);    // 因为要取最小值 初始化为无穷大

        while (1) {
            // 为每个女生解决归宿问题的方法是 :如果找不到就降低期望值,直到找到为止

            // 记录每轮匹配中男生女生是否被尝试匹配过
            memset(vis_girl, false, sizeof vis_girl);
            memset(vis_boy, false, sizeof vis_boy);

            if (dfs(i)) break;  // 找到归宿 退出

            // 如果不能找到 就降低期望值
            // 最小可降低的期望值
            int d = INF;
            for (int j = 0; j < m; ++j)
                if (!vis_boy[j]) d = min(d, slack[j]);
            if(d==INF) return -1;  //无法松弛,找不到完备匹配
            for (int j = 0; j < n; ++j) {
                // 所有访问过的女生降低期望值
                if (vis_girl[j]) ex_girl[j] -= d;
            }

            for (int j = 0; j < m; ++j) {
                // 所有访问过的男生增加期望值
                if (vis_boy[j]) ex_boy[j] += d;
                // 没有访问过的boy 因为girl们的期望值降低,距离得到女生倾心又进了一步!
                else slack[j] -= d;
            }
        }
    }

    // 防止匹配到不存在的边
    int res = 0,flag=0;
    for(int i = 0; i < m; i++){
        if(match[i]==-1||love[match[i]][i]==-INF)
            continue;
        res += love[match[i]][i];
        flag++;
    }
    if(flag<n) res=-1;
    return res;
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,869评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,716评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,223评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,047评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,089评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,839评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,516评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,410评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,920评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,052评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,179评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,868评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,522评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,070评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,186评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,487评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,162评论 2 356

推荐阅读更多精彩内容

  • G - Cyclic Tour题意:图中有n个点和m条有向边现在要将该图分成若干环,每个环中至少有两个点。环与环不...
    Gitfan阅读 795评论 0 1
  • 1、前言 学习是一个痛苦的过程,让我们养成了不求甚解的习惯。 2、匈牙利算法 嗯,首先网上已经有很多啦。但是我觉得...
    bplusb阅读 867评论 2 2
  • 1 序 2016年6月25日夜,帝都,天下着大雨,拖着行李箱和同学在校门口照了最后一张合照,搬离寝室打车去了提前租...
    RichardJieChen阅读 5,105评论 0 12
  • 某天逛淘宝,偶然间发现了一些美丽的布料。于是,一个新的爱好又出现了…… 第一次接触布艺这种东西,特别好奇,又不确定...
    锦时96阅读 455评论 6 6
  • 文/雷钦程 我,一个今年升四年级的小学生,心里是满满的期待。我有一大堆问题...
    花信儿阅读 594评论 0 0