ThreadLocalRandom和random

先查看random 源码
1.有一个成员变量seed,类型为AtomicLong,无参构造方法,会通过特定的算法得到一个值 * 当前纳秒数得到一个seed。随机性就体现再这个当前纳秒数。算法计算的值是固定的。所以,如果指定seed值,那么产生的随机数就是一样的。
2.next每次生成随机数的算法都是固定的,没有掺杂随机因素。所以只要seed固定。每次调用next方法产生的随机数也是固定的。
3.random多线程并发下,使用的就是atomicLong 的的cas变化seed。所以,这里就有个缺点,多线程下,cas自旋消耗比较严重。


 public Random() {
        this(seedUniquifier() ^ System.nanoTime());
    }
 public Random(long seed) {
        if (getClass() == Random.class)
            this.seed = new AtomicLong(initialScramble(seed));
        else {
            // subclass might have overriden setSeed
            this.seed = new AtomicLong();
            setSeed(seed);
        }
    }
    private static final AtomicLong seedUniquifier
        = new AtomicLong(8682522807148012L);
 private static long seedUniquifier() {
    
        for (;;) {
            long current = seedUniquifier.get();
            long next = current * 181783497276652981L;
            if (seedUniquifier.compareAndSet(current, next))
                return next;
        }
    }
protected int next(int bits) {
        long oldseed, nextseed;
        AtomicLong seed = this.seed;
        do {
            oldseed = seed.get();
            nextseed = (oldseed * multiplier + addend) & mask;
        } while (!seed.compareAndSet(oldseed, nextseed));
        return (int)(nextseed >>> (48 - bits));
    }

因为多线程下random自旋消耗比较大。所以有一个ThreadLocalRandom,顾名思义,和ThreadLocal原理差不多,线程本身维护自己的random(其实是random的seed),之后线程根据自己的seed产生随机数。自然就没有了多个线程自旋争夺同一个seed的并发消耗。

可以看到都是通过unsafe获取当前线程的当前变量值。

 public static ThreadLocalRandom current() {
       if (UNSAFE.getInt(Thread.currentThread(), PROBE) == 0)
           localInit();
       return instance;
   }

1.ThreadLocalRandom的随机性就体现在seeder这个atomicLong。第一次初始化的时候(也就是第一个调用current方法的线程),会通过当前毫秒数和当前纳秒数,获取到seed,之后每个线程调用一次current方法,都会通过old seed,通过特定的算法,获取到新seed,然后每个线程自己维护起来。
2.除了通过时间来达到随机效果之后。具体的算法和random也不一样,算法不研究。

static final void localInit() {
        int p = probeGenerator.addAndGet(PROBE_INCREMENT);
        int probe = (p == 0) ? 1 : p; // skip 0
        long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
        Thread t = Thread.currentThread();
        UNSAFE.putLong(t, SEED, seed);
        UNSAFE.putInt(t, PROBE, probe);
    }
    private static final AtomicLong seeder = new AtomicLong(initialSeed());
private static long initialSeed() {
        String pp = java.security.AccessController.doPrivileged(
                new sun.security.action.GetPropertyAction(
                        "java.util.secureRandomSeed"));
        if (pp != null && pp.equalsIgnoreCase("true")) {
            byte[] seedBytes = java.security.SecureRandom.getSeed(8);
            long s = (long)(seedBytes[0]) & 0xffL;
            for (int i = 1; i < 8; ++i)
                s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
            return s;
        }
        return (mix64(System.currentTimeMillis()) ^
                mix64(System.nanoTime()));
    }
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容