强化学习第5课:什么是马尔科夫决策过程

在强化学习中,有一个非常常见的决策过程叫马尔克夫决策过程。

它和我们前面讲的决策过程是有一样的结构,只不过它会有更多限制。这里同样也有 agent 和环境,只不过还就多了一个状态,用 s 来表示。状态 state 是 agent 可以在环境中所观察到的东西, 然后 agent 可以选择一个行为,并从环境中获得反馈。

所有的行为用 a 表示,所有的状态用 s 表示。r 代表 agent 可以获得的奖励,它的值越大,我们就越应该加强这个行为。

这个决策过程之所以叫马尔可夫决策过程是因为需要有一个马尔科夫假设

意思是在这个环境里,没有其他因素来影响它的状态。也就意味着,当我们想要预测下一个状态的概率,或者想要预测 agent 能获得的奖励时,只需要知道环境的当前状态和行为

听起来可能觉得有点不现实,因为这意味着,如果我们想要给用户展示一个横幅广告,需要的就是一个状态,这个状态要包含用户的所有信息,可是我们肯定无法知道用户的大脑的状态的。

所以这只是一个数学模型,我们需要把问题做简化,模型并不需要精准。在这个决策过程中只需要假装周围的其他任何事情都是噪音。

和通常一样,我们想要优化的是 reward。区别在于这一次环境可以在每个时间点给 agent 即时的奖励。

例如,我们想训练机器人向前走。可以在一个完整的过程后给他一个奖励。例如在它摔倒时只是衡量一下走了有多长多远,这个值就作为奖励。另一种是可以在任何时候都给 agent 一个小小的反馈。

那么这时我们想要优化的不仅仅是单个的奖励,而是想要优化奖励的总和。

这同样适用于棋牌游戏。例如在象棋中,我们可以尝试优化即时的奖励,但这可能会导致我们很快就失败,因为通常即时奖励高的那一步棋并不是最好的那一步,事实上它总是最坏的那一步。

---

学习资料:

Practical Reinforcement Learning

推荐阅读 历史技术博文链接汇总

http://www.jianshu.com/p/28f02bb59fe5

也许可以找到你想要的:

[入门问题][TensorFlow][深度学习][强化学习][神经网络][机器学习][自然语言处理][聊天机器人]

Hello World !

This is 不会停的蜗牛 Alice !

🐌 要开始连载强化学习系列啦!

今天开始我们一起来每天 2 分钟,get 强化学习的一个小知识吧!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容