支持向量机的简单理解

各位小伙伴们大家好,这几天弱弱的看了看老掉牙的支持向量机(Support Vector Machine, SVM)与支持向量回归(Support Vector Regression, SVR),发现知道的太少太弱了,基础知识要好好补一补。

SVM的原理参考

http://en.wikipedia.org/wiki/Support_vector_machine

http://zh.wikipedia.org/wiki/%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA

SVM中对k类即多类问题的处理,有几种方法(节选自一本烂书:方瑞明《支持向量机理论及其应用分析》):

(1)  One against all:设计k个SVM两类分类器;

(2)  All against all/one against one: 设计两两k(k-1)/2个SVM两类分类器。

(3)  Error correcting output codes(ECOCs):大约是利用类似Hanming码的方式,去除输出的错误,没有太仔细研究,但这种方法可能将来对我有用。p.s. Hanming编码:用多位编码少位的数据,采取处理避免信道噪声引起的信号错误,采用Hanming矩阵,大致参考(2005)A study on Error Correcting Output Codes.pdf,说了一点点。

(4)  一次性分类:采用一次优化求解解决问题。对于每一类,设计w_i与b_i,约束真实类别对应的w_i x + b_i大于其他类别的w_i x + b_i进行训练,求解目标是所有w_i的范数之和最小,也可以引入 样本数乘以类别数 个松驰变量。

LIBSVM采用的是(2),并且投票的方法,如果两类投票相同,它选择标号小的一类-_-b。

SVR(support vector regression)的主要思想:

(1)  所谓回归(regression),基本上就是拟合,用一个函数拟合x与y的关系。对于SVR来说,x是向量,y是标量,拟合的函数形式为y=W^T*g(x)+b,其中g(x)为核函数对应的特征空间向量。

(2)  SVR认为,只要估计的y在实际的y的两侧一个固定的范围(epsilon)之内,就认为是估计正确,没有任何损失;

(3)  SVR的优化目标,是|W|最小,这样y-x曲线的斜率最小,这个function最flat,这样据说可以增加估计的鲁棒性。

(4)  之后的事情就很自然了,和SVM一样:可以有soft margin,用一个小正数控制。用对偶式来解;

(5)  但有一个不同,控制范围的epsilon的值难于确定,在最小优化目标中加入一项C*

u*epsilon,其中epsilon是一个变量,nu是一个预先给定的正数。

SVM中的增量学习,可以采用的有几种方式:

(1)  基于KKT条件方法,在新的训练样本中选择不符合已训练分类器的KKT(Karush-Kuhn-Tucker)条件的样本与原支持向量组成新的训练集,如此反复。

(2)  Batch-SVM:原支持向量+新训练样本进行训练;

(3)  渐进增量学习方法:这个复杂一点,要求比较多的迭代次数。

关于SVM的一些其他事情:

(1)  去掉训练数据中的非支持向量(包括软间隔问题中的在间隔带外的正确分类样本),优化的结果不变,因为那些是原优化问题中的不起作用约束,同时又有全局最优解;

(2)  硬间隔SVM与二范数软间隔SVM(L2SVM)有唯一解,一范数软间隔SVM(L1SVM)不一定有唯一解。

以下是我的学习的笔记。欢迎大家多多指教

图片发自简书App


图片发自简书App

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容