hive数据倾斜及解决方案

1、空值null引起的数据倾斜

        解决方案1:where条件过滤掉空值

        解决方案2:关联时使用concat('hive',rand())给定随机值,因为null值参与shuffle时的hash结果是一样的,那么我们可以给null值随机赋值,这样它们的hash结果就不一样,就会进入到不同的reduce当中去。

2、不同的数据类型引发的数据倾斜

        解决方案:用cast转换成相同的数据类型

3、不可拆分的大文件引发的数据倾斜

        解决方案:将使用GZIP压缩等不支持文件分割的文件转为bzip和zip等支持文件分割的压缩方式。

4、数据膨胀引发的数据倾斜

        解决方案:在HIVE中通过参数hive.new.job.grouping.set.cardinality配置的方式自动控制作业的拆解,该参数的默认值是30。表示针对grouping sets/rollups/cubes这类多维聚合的操作,如果最好拆解的键组合大于该值,会启用新的任务去处理大于该值之外的组合。如果在处理数据时,某个分组聚合的列有较大的倾斜,可以适当调小该值。

5、表关联引发的数据倾斜

        解决方案:通常是将倾斜的数据存到分布式缓存中,分发到各个Map任务所在节点。在Map阶段完成Join操作,即Mapjoin,这避免了Shuffle,从而避免了数据倾斜。

MapJoin是HIVE的一种优化操作,其适用于小表Join大表的场景,由于表的Join操作是在map端且在内存进行的,所以其并不需要启动Reduce任务也不需要经过Shuffle阶段,从而能在一定程度上节省资源,提高Join效率。

hive.auto.convert.join=true; 默认值是true,自动开启Mapjoin优化。

hive.mapjoin.smalltable.filesize=2500000; 默认值是2500000(25M),通过该配置该属性来确定使用该优化的表的大小,如果表的大小小于此值就会被加载到内存中。

**注意**:使用默认启动该优化的方式如果出现莫名其妙的BUG(比如MAPJOIN并不起作用),就将以下两个属性置为fase手动使用MAPJOIN标记来启动该优化:

`hive.auto.convert.join=false` (关闭自动MAPJOIN转换操作)

`hive.ignore.mapjoin.hint=false` (不忽略MAPJOIN标记)

再提一句:将表放到Map端内存时,如果节点的内存很大,但还是出现内存溢出的情况,我们可以通过这个参数 `mapreduce.map.memory.mb` 调节Map端内存的大小。

6、确实无法减少数据量引发的数据倾斜

        解决方案:这类问题最直接的方式就是调整reduce所执行的内存大小。

        调整reduce的内存大小使用`mapreduce.reduce.memory.mb`这个配置。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容