输入两棵二叉树A,B,判断B是不是A的子结构。(ps:我们约定空树不是任意一个树的子结构)
1 思路和方法
(1)先在A中找和B的根节点相同的结点
(2)找到之后遍历对应位置的其他结点,直到B中结点遍历完,都相同时,则B是A的子树
(3)对应位置的结点不相同时,退出继续在A中寻找和B的根节点相同的结点,重复步骤,直到有任何一棵二叉树为空退出
/**
public class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
*/
public class Solution {
public static boolean HasSubtree(TreeNode root1, TreeNode root2) {
boolean result = false;
//当Tree1和Tree2都不为零的时候,才进行比较。否则直接返回false
if (root2 != null && root1 != null) {
//如果找到了对应Tree2的根节点的点
if(root1.val == root2.val){
//以这个根节点为为起点判断是否包含Tree2
result = doesTree1HaveTree2(root1,root2);
}
//如果找不到,那么就再去root的左儿子当作起点,去判断时候包含Tree2
if (!result) {
result = HasSubtree(root1.left,root2);
}
//如果还找不到,那么就再去root的右儿子当作起点,去判断时候包含Tree2
if (!result) {
result = HasSubtree(root1.right,root2);
}
}
//返回结果
return result;
}
public static boolean doesTree1HaveTree2(TreeNode node1, TreeNode node2) {
//如果Tree2已经遍历完了都能对应的上,返回true
if (node2 == null) {
return true;
}
//如果Tree2还没有遍历完,Tree1却遍历完了。返回false
if (node1 == null) {
return false;
}
//如果其中有一个点没有对应上,返回false
if (node1.val != node2.val) {
return false;
}
//如果根节点对应的上,那么就分别去子节点里面匹配
return doesTree1HaveTree2(node1.left,node2.left) && doesTree1HaveTree2(node1.right,node2.right);
}
}