Cell Type annotation---singleR篇

参考文献:

Aran, Looney, Liu et al. Reference-basedanalysis of lung single-cell sequencing reveals a transitional profibroticmacrophage. Nature Immunology (2019)

SingleR是一个用于对单细胞RNA-seq测序(scRNA-seq)数据进行细胞类型自动注释的R包(Aran et al.2019),是基于表达值的correlation的。它通过给定的具有已知类型标签的细胞样本作为参考数据集,对测试数据集中与参考集相似的细胞进行标记注释。具体来说,对于每个测试细胞:

首先,我们计算每个细胞的表达谱与参考样品的表达谱之间的Spearman相关性。这是通过在所有标记对之间识别的marker基因的并集完成的。

其次,我们将每个标签的分数定义为相关分布的固定分位数(默认为0.8)。

最后,我们对所有的标签重复此操作,然后将得分最高的标签作为此细胞的注释。

同时,该程序包还提供了一个网页版的工具,可以在线对单细胞转录组数据进行细胞类型注释分析,可以通过以下网址进行访问: https://comphealth.ucsf.edu/app/singler

最新版SingleR一大优点就是提供了较多的数据集,不是之前的所有数据集整合在里面,我们看不见摸不着,而且细胞类型较少,新的数据集有7种,主要是人和小鼠物种,特别的两个物种的免疫基因,可以把细胞分成很细的T细胞。

==安装====

devtools::install_github('dviraran/SingleR')

==测试例子===

这里先使用来自scRNAseq包中的两个人类胰腺数据集。目的是使用一个预先标记好的数据集对另一个未标记的数据集进行细胞类型注释。首先,我们使用Muraro et al.(2016)的数据作为我们的参考数据集。

library(SingleR)

library(scRNAseq)

//加载参考数据集

sceM <- MuraroPancreasData()

sceM <- sceM[,!is.na(sceM$label)]

//对表达数据进行log归一化处理

sceM <- logNormCounts(sceM)

//加载测试数据集

sceG <- GrunPancreasData()

sceG <- sceG[,colSums(counts(sceG)) > 0] # Remove libraries with no counts.

sceG <- logNormCounts(sceG) 

sceG <- sceG[,1:100] //为了加快速度,只取了前100个

//然后使用SingleR()函数进行细胞类型注释分析,但要使用标记检测模式(marker detection mode),该模式会考虑跨细胞表达的差异。在这里,使用Wilcoxon ranked sum test检验来识别标签对之间比较的topmarkers。与默认的标记检测算法相比,此方法会更慢,但更适用于单细胞测序数据(对于中位数通常为零的低覆盖率数据,它可能会失败)。

pred.grun <- SingleR(test=sceG, ref=sceM, labels=sceM$label, de.method="wilcox")

//可以查看细胞类型注释的预测结果

SingleR包提供了一些常用的可视化工具。我们可以使用plotScoreHeatmap()函数显示所有参考标签中所有细胞的分数,这可以让我们检查整个数据集中预测标签的置信度。每个细胞的实际分配标签显示在顶部的颜色栏中。注意,如果进行了微调,这可能不是视觉上得分最高的标签,因为只有预先调整的分数才能在所有标签上直接比较。

上面的图中,我们主要是检查每个细胞内得分的分布。理想情况下,每个细胞(即热图的列)应具有一个明显比其他细胞高的分数,这表明它已被明确地分配给单个标签。

默认情况下,SingleR()函数会以pruned.labels字段来报告出修剪的标签,其中低质量的分配以NA表示。但是,默认的修剪阈值可能不适用于每个数据集。我们提供了plotScoreDistribution()函数来通过使用具有相同标签的细胞中的信息来帮助确定阈值是否合适。这将显示每个标记的跨细胞分布,其中pruneScores()函数以低于3个中位数绝对偏差(MAD)值来定义适当的阈值。

==导入seurat格式===

//以前面处理的pbmc的数据为例子,前面处理和seurat类似

counts <- pbmc@assays$RNA@counts

clusters <- pbmc@meta.data$seurat_clusters

ann <- pbmc@meta.data$orig.ident

meta=pbmc@meta.data #pbmc的meta文件,包含了seurat的聚类结果

pbmc_for_SingleR <- GetAssayData(pbmc, slot="data") ##获取标准化矩阵

pbmc.hesc <- SingleR(test = pbmc_for_SingleR, ref = hpca.se, labels = hpca.se$label.main) # 使用HumanPrimaryCellAtlasData参考数据集,main大类注释

print(plotScoreHeatmap(pbmc.hesc))

pbmc@meta.data$labels <-pbmc.hesc$labels

print(DimPlot(pbmc, group.by = c("seurat_clusters", "labels"),reduction = "umap"))

注:umap直观的可以看到通过singleR注释的细胞标签准确性应该可以(不过注意这儿时pbmc数据集,有些组织单细胞数据可能就不是这样了哦,可能会很乱,做好心理准备哦)

==别的参考数据集===

另一种是不用这儿的参考数据集,利用已有参考数据集,给其它数据集注释(Seurat也能实现)

这儿从pbmc数据集中抽取500个细胞作为新的数据集pbmc1,使用前面给pbmc打上的标签,为pbmc1重新打标签

pbmc1 <-pbmc[,1:500]

test <- GetAssayData(pbmc1, slot="data")

library(scran)

pbmc1.hesc <- SingleR(test=test, ref=pbmc_for_SingleR, labels=pbmc$labels, de.method="wilcox")

pbmc1@meta.data$labels1 <-pbmc1.hesc$labels

print(DimPlot(pbmc1, group.by = c("seurat_clusters", "labels"),reduction = "umap"))

因为pbmc1是从pbmc抽取的,所以新的标签和之前的一致。

当然还可以使用多个数据集作为参考集。

//ref这里用多个数据集

pbmc.hesc <- SingleR(test = pbmc_for_SingleR, ref = list(BP=Blue.se, HPCA=hpca.se), labels = list(Blue.se$label.main, hpca.se$label.main)) 

table(pbmc.hesc$labels,meta$seurat_clusters)

本文使用 文章同步助手 同步

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容