word2vec

n-gram:主要工作是在语料中统计各种词串出现的次数以及平滑化处理,计算一个句子的概率时,只需要找到相关的概率参数,将它们连乘起来就好。

神经网络概率语言模型优点:

  • 词语之间的相似性可以用词向量体现
  • 词向量自带平滑功能

四个名词:

  • CBOW模型:从上下文预测关键词
  • skip-gram:从关键词预测上下文
  • hierarchical softmax:树
  • negative sampling:正负样本

hierarchical softmax:建立一个哈弗曼树,优化目标是:让词向量沿路径到达它所在的叶节点的可能性最大,具体方法是用梯度下降法改进非叶结点的参数。
CBOW的hierarchical softmax模型:求窗口中的向量和,沿路对每一个节点进行优化,最后优化词向量
skip-gram的hierarchical softmax模型:用选中的词向量,对窗口中的其他词的路径中的节点做优化
以上两种方法的区别仅在于:一个是求得和向量,只对本词路径做优化。另一个是用本身词向量对其他若干节点做优化。

negative sampling的训练目标:最大化g(w)



CBOW:用和向量对窗口中的每个词进行训练


skip-gram:把窗口中的每一个词都看作中心词进行训练,优化每一个词向量


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容

  • 只说人话,不砌公式,让非数学专业读者能看明白的Word2Vec。 1. Word2Vec的作用 顾名思义,Word...
    巾梵阅读 17,555评论 2 42
  • 在各种大举深度学习大旗的公司中,Google公司无疑是旗举得最高的,口号喊得最响亮的那一个。2013年末,Goog...
    chaaffff阅读 16,713评论 0 29
  • 由于对nlp还没有整体的了解,只是看了几篇博客。现,只说word2vec。word2vec其实只是工具。 输入是 ...
    吹洞箫饮酒杏花下阅读 2,528评论 0 3
  • 写在前面 态度决定高度!让优秀成为一种习惯! 世界上没有什么事儿是加一次班解决不了的,如果有,就加两次!(- - ...
    夜尽天明时阅读 18,752评论 3 14
  • 百病成医,看来我患病的次数还不够多… 上礼拜傍晚,踏上滑板就屁颠屁颠的出去浪了,校内一路应该吸引不少眼球。嗯,之后...
    夕影西逝阅读 224评论 0 0