1、什么是线性规划
线性规划(Linear programming),在线性等式或不等式约束条件下求解线性目标函数的极值问题,常用于解决资源分配、生产调度和混合问题。例如:
max fx = 2*x1 + 3*x2 - 5*x3
s.t. x1 + 3*x2 + x3 <= 12
2*x1 - 5*x2 + x3 >= 10
x1 + x2 + x3 = 7
x1, x2, x3 >=0
线性规划问题的建模和求解,通常按照以下步骤进行:
(1)问题定义,确定决策变量、目标函数和约束条件;
(2)模型构建,由问题描述建立数学方程,并转化为标准形式的数学模型;
(3)模型求解,用标准模型的优化算法对模型求解,得到优化结果;
欢迎关注 [Youcans 原创系列](https://www.jianshu.com/u/5df8372991c5),数模笔记每周更新
Python数模笔记-PuLP线性规划
Python数模笔记-StatsModels统计回归
Python数模笔记-Sklearn机器学习
Python数模笔记-NetworkX图论
Python数模笔记-模拟退火算法
2、PuLP 库求解线性规划
PuLP是一个开源的第三方工具包,可以求解线性规划、整数规划、混合整数规划问题。
下面以该题为例讲解 PuLP 求解线性规划问题的步骤:
(0)导入 PuLP库函数
import pulp
(1)定义一个规划问题
MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)
pulp.LpProblem 是定义问题的构造函数。
"LPProbDemo1"是用户定义的问题名(用于输出信息)。
参数 sense 用来指定求最小值/最大值问题,可选参数值:LpMinimize、LpMaximize 。
(2)定义决策变量
x1 = pulp.LpVariable('x1', lowBound=0, upBound=7, cat='Continuous')
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Continuous')
x3 = pulp.LpVariable('x3', lowBound=0, upBound=7, cat='Continuous')
pulp.LpVariable 是定义决策变量的函数。
'x1' 是用户定义的变量名。
参数 lowBound、upBound 用来设定决策变量的下界、上界;可以不定义下界/上界,默认的下界/上界是负无穷/正无穷。本例中 x1,x2,x3 的取值区间为 [0,7]。
参数 cat 用来设定变量类型,可选参数值:'Continuous' 表示连续变量(默认值)、' Integer ' 表示离散变量(用于整数规划问题)、' Binary ' 表示0/1变量(用于0/1规划问题)。
(3)添加目标函数
MyProbLP += 2*x1 + 3*x2 - 5*x3 # 设置目标函数
添加目标函数使用 "问题名 += 目标函数式" 格式。
(4)添加约束条件
MyProbLP += (2*x1 - 5*x2 + x3 >= 10) # 不等式约束
MyProbLP += (x1 + 3*x2 + x3 <= 12) # 不等式约束
MyProbLP += (x1 + x2 + x3 == 7) # 等式约束
添加约束条件使用 "问题名 += 约束条件表达式" 格式。
约束条件可以是等式约束或不等式约束,不等式约束可以是 小于等于 或 大于等于,分别使用关键字">="、"<="和"=="。
(5)求解
MyProbLP.solve()
print("Status:", pulp.LpStatus[MyProbLP.status]) # 输出求解状态
for v in MyProbLP.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F(x) = ", pulp.value(MyProbLP.objective)) #输出最优解的目标函数值
solve() 是求解函数。PuLP默认采用 CBC 求解器来求解优化问题,也可以调用其它的优化器来求解,如:GLPK,COIN CLP/CBC,CPLEX,和GUROBI,但需要另外安装。
3、Python程序和运行结果
完整的程序代码如下:
import pulp
MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)
x1 = pulp.LpVariable('x1', lowBound=0, upBound=7, cat='Continuous')
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Continuous')
x3 = pulp.LpVariable('x3', lowBound=0, upBound=7, cat='Continuous')
MyProbLP += 2*x1 + 3*x2 - 5*x3 # 设置目标函数
MyProbLP += (2*x1 - 5*x2 + x3 >= 10) # 不等式约束
MyProbLP += (x1 + 3*x2 + x3 <= 12) # 不等式约束
MyProbLP += (x1 + x2 + x3 == 7) # 等式约束
MyProbLP.solve()
print("Status:", pulp.LpStatus[MyProbLP.status]) # 输出求解状态
for v in MyProbLP.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F(x) = ", pulp.value(MyProbLP.objective)) #输出最优解的目标函数值
程序运行结果如下:
Welcome to the CBC MILP Solver
Version: 2.9.0
Build Date: Feb 12 2015
Status: Optimal
x1 = 6.4285714
x2 = 0.57142857
x3 = 0.0
F(x) = 14.57142851
版权说明:
原创作品
Copyright 2021 YouCans, XUPT
Crated:2021-04-28
欢迎关注 [Youcans 原创系列](https://www.jianshu.com/u/5df8372991c5),数模笔记每周更新
Python数模笔记-PuLP线性规划
Python数模笔记-StatsModels统计回归
Python数模笔记-Sklearn机器学习
Python数模笔记-NetworkX图论
Python数模笔记-模拟退火算法