题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
输入描述
思路
看到这个题目,我们的第一反应是顺序扫描整个数组。每扫描到一个数组的时候,逐个比较该数字和它后面的数字的大小。如果后面的数字比它小,则这两个数字就组成了一个逆序对。假设数组中含有n个数字。由于每个数字都要和O(n)这个数字比较,因此这个算法的时间复杂度为O(n^2)。
我们以数组{7,5,6,4}为例来分析统计逆序对的过程。每次扫描到一个数字的时候,我们不拿ta和后面的每一个数字作比较,否则时间复杂度就是O(n^2),因此我们可以考虑先比较两个相邻的数字。
(a) 把长度为4的数组分解成两个长度为2的子数组;
(b) 把长度为2的数组分解成两个成都为1的子数组;
(c) 把长度为1的子数组 合并、排序并统计逆序对 ;
(d) 把长度为2的子数组合并、排序,并统计逆序对;
在上图(a)和(b)中,我们先把数组分解成两个长度为2的子数组,再把这两个子数组分别拆成两个长度为1的子数组。接下来一边合并相邻的子数组,一边统计逆序对的数目。在第一对长度为1的子数组{7}、{5}中7大于5,因此(7,5)组成一个逆序对。同样在第二对长度为1的子数组{6}、{4}中也有逆序对(6,4)。由于我们已经统计了这两对子数组内部的逆序对,因此需要把这两对子数组 排序 如上图(c)所示, 以免在以后的统计过程中再重复统计。
接下来我们统计两个长度为2的子数组子数组之间的逆序对。合并子数组并统计逆序对的过程如下图如下图所示。
我们先用两个指针分别指向两个子数组的末尾,并每次比较两个指针指向的数字。如果第一个子数组中的数字大于第二个数组中的数字,则构成逆序对,并且逆序对的数目等于第二个子数组中剩余数字的个数,如下图(a)和(c)所示。如果第一个数组的数字小于或等于第二个数组中的数字,则不构成逆序对,如图b所示。每一次比较的时候,我们都把较大的数字从后面往前复制到一个辅助数组中,确保 辅助数组(记为copy) 中的数字是递增排序的。在把较大的数字复制到辅助数组之后,把对应的指针向前移动一位,接下来进行下一轮比较。
过程:先把数组分割成子数组,先统计出子数组内部的逆序对的数目,然后再统计出两个相邻子数组之间的逆序对的数目。在统计逆序对的过程中,还需要对数组进行排序。如果对排序算法很熟悉,我们不难发现这个过程实际上就是归并排序。
个人解法
public class Solution {
public int InversePairs(int [] array) {
if(array==null||array.length==0){
return 0;
}
int copy[]=new int[array.length];
int count=getCount(0,array.length-1, copy,array);
return count;
}
public int getCount(int low ,int high,int copy [],int array[]){
//递归结束条件,说明数组中只有一个数了
if(low==high){
return 0;
}
int mid=(low+high)/2;
int leftCount=getCount(low,mid,copy,array);
int rightCount=getCount(mid+1,high,copy,array);
int count=0;
//将子数组合并,排序,计数;
int i=mid;
int j=high;
int copyIndex=high;
while(i>=low&&j>mid){
if(array[i]>array[j]){
//做完合并后是有序的 如果array[i]>array[j],呢么j前面到mid之间的数也肯定比array[i]小
count+=j-mid;
//如果子数组就已经超过了 需要先进行一次取模
if(count>=1000000007){
count=count%1000000007;
}
//将较大的那个赋值到index大的地方,也就是排序
copy[copyIndex--]=array[i--];
}else{
copy[copyIndex--]=array[j--];
}
}
//这两个for循环顺序是无所谓的,因为一定有一个完成了 不会执行 另一个进行剩下的添加
for(;j>mid;j--){
copy[copyIndex--]=array[j];
}
for(;i>=low;i--){
copy[copyIndex--]=array[i];
}
//将已经排序好的copy数组赋值到array数组中
for(int s =low;s<=high;s++){
array[s]=copy[s];
}
return (count+leftCount+rightCount)%1000000007;
}
}