PyTorch学习笔记(三):自动求导Autograd

现代神经网络依靠反向传播(Back Propogation)算法来对模型进行优化,其本质是大规模链式求导。因此,能够对通过编程来对网络参数进行求导是非常重要的。目前的深度学习框架神经网络如PyTorch和TensorFlow等都实现了自动求梯度的功能。

计算图

计算图(Computation Graph)是现代深度学习框架的核心,其为高效自动求导算法——反向传播(Back Propogation)提供了理论支持。如下所示,计算图是一种特殊的有向无环图(DAG),用于记录算子与变量之间的关系。

计算图

计算图具有两个优势:
a. 使用非常简单的函数就可以组合成一个极其复杂的模型;
b. 可以实现自动微分。

在PyTorch中,通过记录算子与变量之间的关系可以生成表达式对应的计算图。对于表达式y = wx + b,其中wxb是变量,+=是算子。有DAG中,wxb是叶子节点(leaf node),这些节点通常由用户自己创建,不依赖于其他变量。y称为根节点,是计算图的最终目标。

>>> x = torch.ones(2, 2)
>>> w = torch.rand(2, 2, requires_grad=True)
>>> b = torch.rand(2, 2, requires_grad=True)
>>> y = w * x + b
>>> x.is_leaf, w.is_leaf, b.is_leaf
(True, True, True)
>>> y.is_leaf
False
>>>

自动求导

在创建tensor的时候指定requires_grad参数或者使用requires_grad_()函数来指定是否对该参数进行自动求导。

>>> x = torch.ones(2, 2)
>>> w = torch.rand(2, 2, requires_grad=True)
>>> b = torch.rand(2, 2, requires_grad=True)
>>> y = w * x + b

x.requires_grad未指定自动求导,因此是False,w.requires_gradb.requires_grad为我们的求导对象,因此是True。虽然未指定y.requires_grad为True,但由于y依赖于需要求导的w,因此y.requires_grad为True。

>>> x.requires_grad, b.requires_grad, w.requires_grad
(False, True, True)
>>> y.requires_grad
True

有了计算图之后,对根节点调用backward()函数进行反向传播,就能够得到各个需要求导的叶子的导数,通过grad属性即可得到。

>>> y = w * x + b
>>> y.backward()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "F:\ProgramData\Anaconda3\lib\site-packages\torch\tensor.py", line 102, in backward
    torch.autograd.backward(self, gradient, retain_graph, create_graph)
  File "F:\ProgramData\Anaconda3\lib\site-packages\torch\autograd\__init__.py", line 84, in backward
    grad_tensors = _make_grads(tensors, grad_tensors)
  File "F:\ProgramData\Anaconda3\lib\site-packages\torch\autograd\__init__.py", line 28, in _make_grads
    raise RuntimeError("grad can be implicitly created only for scalar outputs")
RuntimeError: grad can be implicitly created only for scalar outputs

如果对非标量y求导,函数需要额外指定grad_tensors,grad_tensors的shape必须和y的相同。

>>> weights = torch.ones(2, 2)
>>> y.backward(weights, retain_graph=True)
>>> w.grad
tensor([[1., 1.],
        [1., 1.]])

此外,PyTorch中梯度是累加的,每次反向传播之后,当前的梯度值会累加到旧的梯度值上。

>>> y.backward(weights, retain_graph=True)
>>> w.grad
tensor([[2., 2.],
        [2., 2.]])
>>> y.backward(weights, retain_graph=True)
>>> w.grad
tensor([[3., 3.],
        [3., 3.]])

要清空变量当前的梯度,可以使用zero()zero_()函数。

>>> w.grad.zero_()
tensor([[0., 0.],
        [0., 0.]])
>>> w.grad
tensor([[0., 0.],
        [0., 0.]])

PS:在我们使用PyTorch构建网络时,Model会在反向传播时会自行处理梯度更新问题,上述知识有助于理解PyToch中的自动求导。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容