实践·pytorch梯度计算

简介

pytorch梯度机制,计算梯度注意事项

关键字

pytorch,autograd,tensor,自动微分,张量,梯度

正文

  在一些优化算法中,常常需要计算函数的梯度,在pytorch可以借助autograd机制来自动计算梯度值。

1. 梯度对象及对应方法

  假设y=f(x),关于x的梯度记为\nabla f(x)\nabla f(x)是关于变量x的函数,其梯度\nabla是随着x的值变化而变化的,决定梯度的除了x自身的值以外还有施加在x上的运算。因此,关注梯度就是关注两个东西,求哪个变量的梯度,该变量上被施加了哪种运算

  首先看变量:在pytorch中把梯度作为一个固有属性结合进张量(tensor),任何一个tensor类型的变量都有梯度(grad)属性,再结合一般场景下的需要,pytorch把tensor类型定义为一个对象,包括5个属性,分别对应data(变量本身的值),grad(梯度值),requires_grad(是否需要梯度,很多场景都不需要求变量的微分),grad_fn(生成该变量结果的运算,即这个值通过什么运算来的),is_leaf(是否叶子节点,叶子才帮你算梯度)。

  接着看运算:在pytorch中没有显式的给出梯度函数表达,而是算出梯度值,存放在tensor类型变量的grad属性中,那么运算也一样用结果来表达,假设y=f(x),这里的y就承载了运算的结果,因此需要求x的梯度值时就对y使用backward()方法来计算x的梯度。

2. 如何使用

  上面提到计算梯度的两个要素:变量运算,对应的pytorch机制是tensor对象和backward方法。因此计算梯度就是学会怎么用这俩货。具体的例子这边不写,各位大神写的很多了,不当搬运工了,推荐参考资料3参考资料2。这里说明两点,然后总结个过程。

  (1)可求梯度的条件

  从上面的叙述知道,一个变量有5个属性,要求这个变量可以求梯度,需要满足2个属性为真,requires_grad=True,is_leaf=True。在声明变量的时候声明requires_grad=True就可以了。在实践过程中如果发现梯度没法计算,要查一下这两个属性。

  (2)回传结果类型

  大部分情况是对标量求梯度,也是在y=f(x)中,y是标量的情况,如果y向量或矩阵,也可以求梯度,此时本质上也是按分量一个一个来,因此要给backward()加个参数,一般情况下该参数的形状和y一样,每一个位置的值指示每个分量的梯度权重,多数情况就是全部设置为1。

  (3)一般过程

  仍然假设求x的关于y=f(x)的梯度,首先设置声明tensor类型变量x,声明的时候需要设置参数requires_grad=True;接下来计算出y=function(x),这里的function是用来表示函数运算过程,最后使用y.backward(),如果y非标量,就加个参数,假设为vv的形状与y相同,此时使用的是y.backward(v),要的梯度值可以通过x.grad获得。

3. 注意事项

  单独写个注意事项,计算变量x的梯度时,x的属性有可能会变化,比如需要对x进行迭代,假设为x=x’,那么x的requires_grad和is_leaf属性会变化,变得不可求梯度,那怎么办呢,其实程序迭代时只需要改变值就好了,使用x.data=x'.data就可以了。

参考资料

[1] https://pytorch.org/docs/1.3.1/index.html
[2] https://blog.csdn.net/qq_27825451/article/details/89393332
[3] https://www.cnblogs.com/marsggbo/p/11549631.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354

推荐阅读更多精彩内容