StatQuest学习笔记03——标准差、标准与置信区间

前言——主要内容

这是StatQuest视频教程的第8-12个。

第8个视频的内容为标准差,标准误,第9个视频是柱状图与饼状图;第10个视频是对数转换以及对数的运算,这个非常简单;第11个视频:置信区间;第12个视频:

标准差与标准误

看下面的案例,这5个点是5只小鼠的体重,其中红色竖线是均值,红色横线就是标准差(standard deviation),它表示的是数据的分布情况,如下所示:

image

接着,我们在5个时间点,又分别测量了这5只小鼠的体重,如下所示:

image

我们分别计算一下这5次检测的均值与标准差,就是下图中竖线与横线所示:

image

此时,将这5次测量数据的均值放到一起,计算这些均值的均值与标准差,如下所示:

image

此时,我们称这个均值的标准差为标准误(The Standard Error,SE,有的书会称为SEM)。

标准差与标准误的区分

标准差

标准差研究 提一次测量中,数据的变异程度,如下所示:

image

标准误

标准误研究的是多次测量的变异程度,如下所示:

image

标准误的估算

对于标准误比较让人糊涂的地方在于,虽然标准误研究的是多次测量的变异,但是,一次的检测数据也能估算出标准误(其实就是标准差除以样本数的平方根)。因此,如果你只有一次检测的数据,也是能够画出标准误的曲线的(在GraphPad中就能发现这种绘图方法)。

但是,多数情况下,绘图中经常出现的是标准差,而不是标准误(虽然标准误很好看),因为图形展示的通常是你的测量数据,而不是研究几次测量数据的变异。

饼状图与柱状图

这两种图的用途很好区分,从形状上就能看出,饼状图通常是研究不同成分在整体中的比例,柱状图通常是研究不同成分自身的数据,如下所示:

image
image

如果是两组数据,只看柱状图不太容易看出它们整体中各种成分的差异,如果是饼状图就很容易看出来了,如下所示:

image

对数

先看一组数据,如下所示:

image

在上图中,左边数轴上是0到8,而这些数字可以写成2的指数幂形式,这样的话,1就是2的0次方,2是2的1次方,4是2的2次方,相应的的5,6,7都可以这么写,只是它们的指数不是整数,这样的话,我们将这个数轴转换一下,让这些数字的指数作为数轴上的数字,如下所示:

image

从上图可知,使用了一个对数log转换,将原始数字转换成了以2为底的对数形式。

在生物学中,RT-qPCR的数据基本上都是以2为底的对数的形式展现的,我们经常看到RT-qPCR的数值不是整数,这也好理解,因为PCR的扩增效率不可能是100%(如果是100%,则肯定是整数)。在qPCR的数据处理中,通常使用的是几何均数。几何均数是对各变量值的连乘积开项数次方根。 另外,在对转录组数据进行分析时,也通常使用对数,对于差异基因的结果,通常也是对数表示的,正数表示基因表达上调,反之,下调。

置信区间(confidence intervals)

先看一个场景,下图是我们检测了一批雌性小鼠(12只)的体重,其中红色竖线是这次数据的均值:

image

此时,我们从这批小鼠中自举(bootstrap)一些样本,例如我们随机选取12只(肯定有重复挑中的小鼠,这个没有关系),如下所示:

image

关于自举:

自举的思想:

从给定训练集中有放回的均匀抽样,也就是说,每当选中一个样本,它等可能地被再次选中并被再次添加到训练集中。从初始样本重复随机替换抽样,生成一个或一系列待检验统计量的经验分布。 无需假设一个特定的理论分布,便可生成统计量的置信区间,并能检验统计假设。

自举后,计算这次抽样的均数,然后再自举,再算均数,这个过程持续很多次(大于1000次),计算出的均数如下所示:

image

此时我们计算置信区间,如下所示:

image

这个95%的置信区间就是指,它覆盖了这次自举所有数据的95%均值范围。由于这个置信区间覆盖了95%的均值,那么我们就知道,均数在这个区间之外的概率是不到5%(0.05只是一个界限)。那也就是说,任何在这个区间之外的数字的概率p值是小于0.05的(也就是说有显著意义)。

置信区间的用处

image

先看置信区间的示意图:

image

均值是对“真实”值的估计(真实值是无法知道的,只能通过不断地测量一步一步接近)。

它有95%的可能落在95%的置信区间内,下图的绿色椭圆的范围是在95%的置信区间之外,它的最右边是20,我们可以发现,在这个绿色椭圆之内也有一个均值(是通过自举法计算的),也就是说这个均值落在了这个绿色的椭圆之内,那么均值落在它里面的概率是多少?这个概率我们通常用p值来表示。从图形上可以看出来,这个绿色椭圆的范围是在95%的置信区间之外,因此我们就可以推断出此时p值是小于0.05的(这只是一种非常粗糙的推断,具体的推导过程可以看相关的数学书),因此我们就可以下结论:“真实”值出现在95%区间以外的概率不到5%(也就是说p值小于0.05时有统计学意义)。

image

两个数据集的比较

再看一个案例,下图是雌性小鼠与在雄性小鼠体重的测量结果,如下所示:

image

其中,上图的黑色横线表示的是各自的95%置信区间。从图片上我们就可以直接看出,这两组数据的95%置信区间并不重复,它是有统计学意义的,也就是说我们可以直接看出来p值是小于0.05的(在实际运用中不可以这么做,还是要通过t检验进行计算)。但是,如果它们的95%置信区间有部分重合,就像下面的这个样子:

image

此时就要进行t检验了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容