机器学习-8:DeepLN之BN

我想说:

又到了每天写东西的时间了,这时候最兴奋,这种兴奋可以延续到后半夜,两点甚至三点;以前写博客都是杂乱无章的,现在写公众号决定按照一个框架,按照一个系列来写;

1. 前言:

先看一个概念:

Covariance shift
——when the input distribution to a learning system changes, it is said to experience covariance shift.

在模型训练的时候我们一般都会做样本归一化(样本归一化作用会在下面文章介绍),在往多层神经网络传播时,前面层参数的改变,使得后面层的输入分布发生改变时,就叫Internal covariance shift。这会导致:其一,增加模型训练时间,因为样本分布变了,要调整 参数适应这种分布;其二:在MachineLN之激活函数文章中提到的使用sigmoid函数,梯度消失的问题;

2. BN (Batch Normalization)

BN:批量规范化:使得均值为0,方差为1;scale and shift:引入两个参数,从而使得BN操作可以代表一个恒等变换,为了训练所需加入到BN有可能还原最初的输入;看一下这个公式:

image

再看下面BN的两个公式,将上面公式带入,你会发现输入=输出,好尴尬啊!

image

BN的引入就是为了解决 样本分布改变训练训练慢、梯度消失、过拟合(可以使用较低的dropout和L2系数)等问题;

BN的具体推导,就不得不提到google的Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift论文,看下图:

image

输入:m个样本x{1,...,m},一般时卷积后输入激活函数前的数据;

输出:BN的处理结果;

上图中前向传播的公式应该很好理解;

下图是后向传播的公式:

image

直接看起来比较费劲还是用手撕一下吧:

image

再看一下训练过程:

image

可以解释为:(参考大神)

  • 1.对于K维(通道数)的输入,假设每一维包含m个变量(这里可以理解为cnn的feature map),所以需要K个循环。每个循环中按照上面所介绍的方法计算γ与β。这里的K维,在卷积网络中可以看作是卷积核个数(卷积后的通道数),如网络中第n层有64个卷积核,就需要计算64次。

  • 需要注意,在正向传播时,会使用γ与β使得BN层输出与输入一样。

  • 2.在反向传播时利用γ与β求得梯度从而改变训练权值(变量)。

  • 3.通过不断迭代直到训练结束,求得关于不同层的γ与β。如网络有n个BN层,每层根据batch_size决定有多少个变量,设定为m,这里的mini-batcherB指的是特征图大小batch_size,即m=特征图大小batch_size**,因此,对于batch_size为1,这里的m就是每层特征图的大小。

  • 4.不断遍历训练集中的图片,取出每个batch_size中的γ与β,最后统计每层BN的γ与β各自的和除以图片数量得到平均直,并对其做无偏估计直作为每一层的E[x]与Var[x]。

  • 5.在预测的正向传播时,对测试数据求取γ与β,并使用该层的E[x]与Var[x],通过图中11:所表示的公式计算BN层输出。

  • 注意,在预测时,BN层的输出已经被改变,所以BN层在预测的作用体现在此处。

3. 总结

上面两本部分回答了BN的由来、BN的计算、BN的前后向传播。对自己今后的工作有什么启发?

还可以参考:

1. tf的BN代码:http://blog.csdn.net/u014365862/article/details/77188011

  1. resnet、inception、inception_resnet等网络的BN使用:http://blog.csdn.net/u014365862/article/details/78272811

推荐阅读:

  1. MachineLN之三要素

  2. MachineLN之模型评估

  3. MachinLN之dl

  4. DeepLN之CNN解析

5. DeepLN之手撕CNN权值更新(笔记)

  1. DeepLN之CNN源码

  2. MachineLN之激活函数

image

我想说:

又到了每天写东西的时间了,这时候最兴奋,这种兴奋可以延续到后半夜,两点甚至三点;以前写博客都是杂乱无章的,现在写公众号决定按照一个框架,按照一个系列来写;

1. 前言:

先看一个概念:

Covariance shift
——when the input distribution to a learning system changes, it is said to experience covariance shift.

在模型训练的时候我们一般都会做样本归一化(样本归一化作用会在下面文章介绍),在往多层神经网络传播时,前面层参数的改变,使得后面层的输入分布发生改变时,就叫Internal covariance shift。这会导致:其一,增加模型训练时间,因为样本分布变了,要调整 参数适应这种分布;其二:在MachineLN之激活函数文章中提到的使用sigmoid函数,梯度消失的问题;

2. BN (Batch Normalization)

BN:批量规范化:使得均值为0,方差为1;scale and shift:引入两个参数,从而使得BN操作可以代表一个恒等变换,为了训练所需加入到BN有可能还原最初的输入;看一下这个公式:
image

再看下面BN的两个公式,将上面公式带入,你会发现输入=输出,好尴尬啊!

image

BN的引入就是为了解决 样本分布改变训练训练慢、梯度消失、过拟合(可以使用较低的dropout和L2系数)等问题;

BN的具体推导,就不得不提到google的Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift论文,看下图:

image

输入:m个样本x{1,...,m},一般时卷积后输入激活函数前的数据;

输出:BN的处理结果;

上图中前向传播的公式应该很好理解;

下图是后向传播的公式:

image

直接看起来比较费劲还是用手撕一下吧:

image

再看一下训练过程:

image

可以解释为:(参考大神)

  • 1.对于K维(通道数)的输入,假设每一维包含m个变量(这里可以理解为cnn的feature map),所以需要K个循环。每个循环中按照上面所介绍的方法计算γ与β。这里的K维,在卷积网络中可以看作是卷积核个数(卷积后的通道数),如网络中第n层有64个卷积核,就需要计算64次。

  • 需要注意,在正向传播时,会使用γ与β使得BN层输出与输入一样。

  • 2.在反向传播时利用γ与β求得梯度从而改变训练权值(变量)。

  • 3.通过不断迭代直到训练结束,求得关于不同层的γ与β。如网络有n个BN层,每层根据batch_size决定有多少个变量,设定为m,这里的mini-batcherB指的是特征图大小batch_size,即m=特征图大小batch_size**,因此,对于batch_size为1,这里的m就是每层特征图的大小。

  • 4.不断遍历训练集中的图片,取出每个batch_size中的γ与β,最后统计每层BN的γ与β各自的和除以图片数量得到平均直,并对其做无偏估计直作为每一层的E[x]与Var[x]。

  • 5.在预测的正向传播时,对测试数据求取γ与β,并使用该层的E[x]与Var[x],通过图中11:所表示的公式计算BN层输出。

  • 注意,在预测时,BN层的输出已经被改变,所以BN层在预测的作用体现在此处。

3. 总结

上面两本部分回答了BN的由来、BN的计算、BN的前后向传播。对自己今后的工作有什么启发?

还可以参考:

1. tf的BN代码:http://blog.csdn.net/u014365862/article/details/77188011

  1. resnet、inception、inception_resnet等网络的BN使用:http://blog.csdn.net/u014365862/article/details/78272811

推荐阅读:

  1. 机器学习-1:MachineLN之三要素

  2. 机器学习-2:MachineLN之模型评估

  3. 机器学习-3:MachineLN之dl

  4. 机器学习-4:DeepLN之CNN解析

  5. 机器学习-5:DeepLN之CNN权重更新(笔记)

  6. 机器学习-6:DeepLN之CNN源码

  7. 机器学习-7:MachineLN之激活函数

  8. 机器学习-8:DeepLN之BN

  9. 机器学习-9:MachineLN之数据归一化

  10. 机器学习-10:MachineLN之样本不均衡

  11. 机器学习-11:MachineLN之过拟合

  12. 机器学习-12:MachineLN之优化算法

  13. 机器学习-13:MachineLN之kNN

  14. 机器学习-14:MachineLN之kNN源码

  15. 机器学习-15:MachineLN之感知机

  16. 机器学习-16:MachineLN之感知机源码

  17. 机器学习-17:MachineLN之逻辑回归

  18. 机器学习-18:MachineLN之逻辑回归源码

MachineLN 交流群请扫码加machinelp为好友:

image

版权声明:本文为博主原创文章,未经博主允许不得转载。有问题可以加微信:lp9628(注明CSDN)。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容