像素&滤波器

1.什么是图像
图像是一种函数映射,从位置到像素的映射R2->RM

Paste_Image.png

2.什么是滤波器
利用原像素组合成新的图像
目标是
(1)提取有用的特征(边、点等等)
(2)图像去噪、修复、高精度化、模糊、锐化等等

Paste_Image.png

滤波器相当于一个系统,输入是原始图像,输出是新图像,骚年你还记得那大明湖畔的线性时不变系统吗

滤波器1——平均滤波器

Paste_Image.png

也即用这个像素周围的8个点和他一起取平均作为新的值。
可以达到平滑图像(移除尖锐的特征)的效果,看下面的CS女神例子

Paste_Image.png

滤波器2——分割滤波器
这其实基于一个简单的阈值系统

Paste_Image.png

处理效果

Paste_Image.png

下面一些Point你需要知道以下就可以:
1.什么是线性系统
2.什么是时不变系统(移不变系统)
3.线性时不变系统冲击响应表明了她的一切

Paste_Image.png

4.会计算一维卷积


6597664602447531116.gif
Convolution_of_spiky_function_with_box2.gif

5.相关性

cross_correlation_animation_auto-tune.gif

6.知道卷积和相关性的区别
——卷积是交叠量的积分,是一种滤波器操作
——而相关性是比较啷个输入相似性的运算,表明相关性

然后重点来了,我们这里上二维卷积

816298-20161024230349687-611620533.gif

卷积的一些细节
边缘处理,补0、补边缘值、补镜像值等等


Paste_Image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容

  • 不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘...
    大川无敌阅读 13,847评论 0 29
  • 参考资料: 图像卷积与滤波的一些知识点 图像处理基本概念——卷积,滤波,平滑 1.卷积的基本概念 首先,我们有一个...
    keloli阅读 10,019评论 0 26
  • http://blog.csdn.net/x454045816/article/details/52153250 ...
    G风阅读 7,056评论 0 1
  • CNN on TensorFlow 本文大部分内容均参考于: An Intuitive Explanation o...
    _Randolph_阅读 7,693评论 2 31
  • 五、Deep Learning的基本思想 假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,...
    dma_master阅读 1,642评论 1 2