m基于深度学习网络的宠物狗种类识别系统matlab仿真,带GUI界面

1.算法仿真效果

matlab2022a仿真结果如下:



2.算法涉及理论知识概要

基于深度学习网络的宠物狗种类识别系统是一种利用深度学习技术进行图像分类的方法,可以自动学习图像中的特征,并根据这些特征对图像进行分类。该系统的原理和数学公式如下:


深度神经网络模型:在宠物狗种类识别系统中,使用深度神经网络模型来学习图像中的特征。该模型由多个神经元组成,每个神经元接收输入数据并输出一个数值。通过多个神经元的组合,可以提取出图像中的各种特征。

特征提取:深度神经网络模型可以自动从原始图像数据中提取特征。该过程是通过多个卷积层和池化层实现的。卷积层可以检测出图像中的各种特征,例如颜色、纹理等,而池化层则可以对这些特征进行聚合,以减少计算复杂度。

分类器:宠物狗种类识别系统使用分类器对提取的特征进行分类。该分类器可以是softmax分类器、支持向量机(SVM)等。通过训练深度神经网络模型和分类器,可以使该系统能够准确地对宠物狗种类进行分类。

损失函数:为了优化深度神经网络模型和分类器,需要定义一个损失函数。该损失函数可以表示宠物狗种类识别的准确率和泛化能力。在训练过程中,通过最小化该损失函数来优化模型和分类器,以提高宠物狗种类识别系统的性能。

反向传播算法:在训练深度神经网络模型和分类器时,使用反向传播算法来更新每个神经元的权重和偏置值。该算法可以自动计算梯度并更新权重和偏置值,以最小化损失函数。

基于深度学习网络的宠物狗种类识别系统的主要步骤如下:


数据预处理:对收集的宠物狗图像数据进行预处理,例如调整图像大小、归一化像素值等。

构建深度神经网络模型:构建一个深度神经网络模型,包括多个卷积层、池化层和全连接层。

训练模型:使用宠物狗图像数据集训练深度神经网络模型和分类器。通过最小化损失函数来优化模型和分类器。

测试模型:使用测试集对训练好的模型进行测试,评估宠物狗种类识别系统的准确率和泛化能力。

应用模型:将训练好的模型应用到实际场景中,例如作为宠物狗品种识别工具,允许用户上传图像并立即获得宠物狗品种的预测结果。

基于深度学习网络的宠物狗种类识别系统具有以下优点:


自动化程度高:该系统可以自动从原始图像数据中学习特征,并自动对图像进行分类,减少了人工干预的程度。

高准确率和泛化能力:通过训练深度神经网络模型和分类器,可以使该系统具有高准确率和泛化能力,能够适应各种不同的图像分类任务。

可扩展性:基于深度学习网络的宠物狗种类识别系统可以随着数据集的增加和技术的发展不断扩展和改进。

总的来说,基于深度学习网络的宠物狗种类识别系统是一种利用深度学习技术进行图像分类的方法,具有自动化程度高、高准确率和泛化能力强、可扩展性好等优点。它可以为实际应用场景提供更好的解决方案,为实际应用场景提供更好的解决方案。


3.MATLAB核心程序

% 设置训练选项

maxEpochs = NEpochs;

Minibatch_Size = NMB;

Validation_Frequency = floor(numel(Resized_Training_Dataset.Files)/Minibatch_Size);

Training_Options = trainingOptions('sgdm', ...

'MiniBatchSize', Minibatch_Size, ...

'MaxEpochs', maxEpochs, ...

'InitialLearnRate', LR, ...

'Shuffle', 'every-epoch', ...

'ValidationData', Resized_Validation_Dataset, ...

'ValidationFrequency', Validation_Frequency, ...

'Verbose', false, ...

'Plots', 'training-progress');


% 使用训练选项训练网络

net = trainNetwork(Resized_Training_Dataset, New_Network, Training_Options);

% 保存训练后的网络

save gnet.mat net





function edit7_Callback(hObject, eventdata, handles)

% hObject    handle to edit7 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    structure with handles and user data (see GUIDATA)


% Hints: get(hObject,'String') returns contents of edit7 as text

%        str2double(get(hObject,'String')) returns contents of edit7 as a double



% --- Executes during object creation, after setting all properties.

function edit7_CreateFcn(hObject, eventdata, handles)

% hObject    handle to edit7 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    empty - handles not created until after all CreateFcns called


% Hint: edit controls usually have a white background on Windows.

%       See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end




function edit8_Callback(hObject, eventdata, handles)

% hObject    handle to edit8 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    structure with handles and user data (see GUIDATA)


% Hints: get(hObject,'String') returns contents of edit8 as text

%        str2double(get(hObject,'String')) returns contents of edit8 as a double



% --- Executes during object creation, after setting all properties.

function edit8_CreateFcn(hObject, eventdata, handles)

% hObject    handle to edit8 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    empty - handles not created until after all CreateFcns called


% Hint: edit controls usually have a white background on Windows.

%       See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end


function edit9_Callback(hObject, eventdata, handles)

% hObject    handle to edit9 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    structure with handles and user data (see GUIDATA)


% Hints: get(hObject,'String') returns contents of edit9 as text

%        str2double(get(hObject,'String')) returns contents of edit9 as a double



function edit10_Callback(hObject, eventdata, handles)

% hObject    handle to edit10 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    structure with handles and user data (see GUIDATA)


% Hints: get(hObject,'String') returns contents of edit10 as text

%        str2double(get(hObject,'String')) returns contents of edit10 as a double

...................................................................................

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,366评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,521评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,689评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,925评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,942评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,727评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,447评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,349评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,820评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,990评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,127评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,812评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,471评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,017评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,142评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,388评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,066评论 2 355

推荐阅读更多精彩内容