博弈型动态规划

博弈类问题的套路都差不多,下文举例讲解,其核心思路是在二维 dp 的基础上使用元组分别存储两个人的博弈结果。掌握了这个技巧以后,别人再问你什么俩海盗分宝石,俩人拿硬币的问题,你就告诉别人:我懒得想,直接给你写个算法算一下得了。

举个例子:

你和你的朋友面前有一排石头堆,用一个数组 piles 表示,piles[i] 表示第 i 堆石子有多少个。你们轮流拿石头,一次拿一堆,但是只能拿走最左边或者最右边的石头堆。所有石头被拿完后,谁拥有的石头多,谁获胜。

石头的堆数可以是任意正整数,石头的总数也可以是任意正整数,这样就能打破先手必胜的局面了。比如有三堆石头 piles = [1,100,3],先手不管拿 1 还是 3,能够决定胜负的 100 都会被后手拿走,后手会获胜。

假设两人都很聪明,请你设计一个算法,返回先手和后手的最后得分(石头总数)之差。比如上面那个例子,先手能获得 4 分,后手会获得 100 分,你的算法应该返回 -96。

这样推广之后,这个问题算是一道 Hard 的动态规划问题了。博弈问题的难点在于,两个人要轮流进行选择,而且都贼精明,应该如何编程表示这个过程呢?

一、定义 dp 数组的含义

定义 dp 数组的含义是很有技术含量的,同一问题可能有多种定义方法,不同的定义会引出不同的状态转移方程,不过只要逻辑没有问题,最终都能得到相同的答案。

我建议不要迷恋那些看起来很牛逼,代码很短小的奇技淫巧,最好是稳一点,采取可解释性最好,最容易推广的设计思路。本文就给出一种博弈问题的通用设计框架。

介绍 dp 数组的含义之前,我们先看一下 dp 数组最终的样子:


image.png

下文讲解时,认为元组是包含 first 和 second 属性的一个类,而且为了节省篇幅,将这两个属性简写为 fir 和 sec。比如按上图的数据,我们说 dp[1][3].fir = 10,dp[0][1].sec = 3。

先回答几个读者可能提出的问题:

这个二维 dp table 中存储的是元组,怎么编程表示呢?这个 dp table 有一半根本没用上,怎么优化?很简单,都不要管,先把解题的思路想明白了再谈也不迟。

以下是对 dp 数组含义的解释:

image.png

我们想求的答案是先手和后手最终分数之差,按照这个定义也就是 dp[0][n−1].fir−dp[0][n−1].sec

二、状态转移方程

写状态转移方程很简单,首先要找到所有「状态」和每个状态可以做的「选择」,然后择优。

根据前面对 dp 数组的定义,状态显然有三个:****开始的索引 i,结束的索引 j,当前轮到的人。

dp[i][j][fir or sec]
其中:
0 <= i < piles.lengthi <= j < piles.length
其中:
0 <= i < piles.lengthi <= j < piles.length

对于这个问题的每个状态,可以做的选择有两个:****选择最左边的那堆石头,或者选择最右边的那堆石头。 我们可以这样穷举所有状态:

image.png

上面的伪码是动态规划的一个大致的框架,股票系列问题中也有类似的伪码。这道题的难点在于,两人是交替进行选择的,也就是说先手的选择会对后手有影响,这怎么表达出来呢?

根据我们对 dp 数组的定义,很容易解决这个难点,写出状态转移方程:


image.png

根据 dp 数组的定义,我们也可以找出 base case,也就是最简单的情况:


image.png

image.png

这里需要注意一点,我们发现 base case 是斜着的,而且我们推算 dp[i][j] 时需要用到 dp[i+1][j] 和 dp[i][j-1]:
image.png

所以说算法不能简单的一行一行遍历 dp 数组,而要斜着遍历数组


image.png

说实话,斜着遍历二维数组说起来容易,你还真不一定能想出来怎么实现,不信你思考一下?这么巧妙的状态转移方程都列出来了,要是不会写代码实现,那真的很尴尬了。

三、代码实现

import java.util.Scanner;
import java.util.*;
public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int N = in.nextInt();
        int[] nums = new int[N];
        for (int i = 0; i < N; i++) {
            nums[i] = in.nextInt();
        }
        dp_deal(nums);
    }

    static class Pair {
        int fir, sec;
        Pair(int fir, int sec) {
            this.fir = fir;
            this.sec = sec;
        }
    }

    public static void dp_deal(int[] nums) {
        int n = nums.length;
        Pair[][] dp = new Pair[n][n];

        for (int i = 0; i < n; i++) {
            for (int j = i; j < n; j++) {
                dp[i][j] = new Pair(0, 0);
            }
        }
        for (int i = 0; i < n; i++) {
            dp[i][i].fir = nums[i];
            dp[i][i].sec = 0;
        }

        for (int l = 1; l <= n-1; l++) {
            for (int i = 0; i < n-1; i++) {
                int j = l + i;
                if (j >= n) {
                    break;
                }
                int left = nums[i] + dp[i+1][j].sec;
                int right = nums[j] + dp[i][j-1].sec;
                if (left > right) {
                    dp[i][j].fir = left;
                    dp[i][j].sec = dp[i+1][j].fir;
                } else {
                    dp[i][j].fir = right;
                    dp[i][j].sec = dp[i][j-1].fir;
                }
            }
        }

        Pair res = dp[0][n-1];
        int num = Math.max(res.fir, res.sec);
        System.out.println(num);
    }
}

动态规划解法,如果没有状态转移方程指导,绝对是一头雾水,但是根据前面的详细解释,读者应该可以清晰理解这一大段代码的含义。

而且,注意到计算 dp[i][j] 只依赖其左边和下边的元素,所以说肯定有优化空间,转换成一维 dp,想象一下把二维平面压扁,也就是投影到一维。但是,一维 dp 比较复杂,可解释性很差,大家就不必浪费这个时间去理解了。

四、最后总结

本文给出了解决博弈问题的动态规划解法。博弈问题的前提一般都是在两个聪明人之间进行,编程描述这种游戏的一般方法是二维 dp 数组,数组中通过元组分别表示两人的最优决策。

之所以这样设计,是因为先手在做出选择之后,就成了后手,后手在对方做完选择后,就变成了先手。这种角色转换使得我们可以重用之前的结果,典型的动态规划标志。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 229,698评论 6 539
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,202评论 3 426
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 177,742评论 0 382
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,580评论 1 316
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,297评论 6 410
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,688评论 1 327
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,693评论 3 444
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,875评论 0 289
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,438评论 1 335
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,183评论 3 356
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,384评论 1 372
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,931评论 5 363
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,612评论 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,022评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,297评论 1 292
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,093评论 3 397
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,330评论 2 377

推荐阅读更多精彩内容