现在的人工智能到底有多智能?

现在的人工智能总的来说,可以算是有智能没智慧、有智商没情商、会计算不会算计、有专才而无通才。

我们看待现阶段的人工智能,它的强大,绝不体现在以自主意识为代表的智能上,而主要体现在以大量数据计算的实时性和准确性为代表的智能上,与人的优缺点恰好互补,赋能现有产业,为生产效率带来提升。

现在人工智能的“智能”可以重点关注一下几点。

大量历史经验数据对当前决策的客观指导

当人在面对一个选择时,经常会依赖历史经验来进行决策。古人有言,“早霞不出门,晚霞行千里”,这个时候判断明天天气好坏的依据仅有是否出现早霞和晚霞,这个二维信息进行决策。随着气象科学的发展,我们现在知道,判断第二天天气好坏,需要考虑方方面面的信息,例如:空气湿度、风向风速、地形位置等。

现在我们再将目光转向股市,由于全球市场经济的高度耦合,带来了前所未有的复杂性。如果抱着“跌买入,涨买进”这样简单的理财理念,已经完全无法应付股市的复杂情况,银行板块的涨幅,可能受到政策影响、利率影响、粮食价格波动、黄金价格波动等等影响。这个时候对于一个单个的个体而言,想要处理如此繁杂的信息,首先无法很快获取所有信息进行辅助决策,此次人脑也无法客观的将多维的信息进行汇总分析。

而依赖人工智能的机器却更适合处理类似问题,尤其在金融行业,数字化开展较早,因此有大量的数据辅助决策。人只需要将可能影响到这只股票的信息高速训练模型,基于机器学习的算法模型可以按照历史信息进行“学习”,来判断当前状况下,这只股票涨跌的可能性分别是多少,甚至可以预估短时间内可以达到的涨幅。

当前,我需要分析一个股票是否需要买入卖出,算法模型会通过大量多维的历史数据作为“经验数据”,将这些经验通过模型拟合成多维曲线,那么,如果想评估当前情况,我只需要将此时此刻这些影响因素的当前状况为坐标,标记在这个多维曲线中,并映射到一个一维坐标下,即“涨”或“跌”。对于短期进行的估计,人工智能可能会比人类更“靠谱”一些。

需要依赖大量记忆的最佳决策

人类目前即使面对最强大的机器,在自主的创造力上还是保持着“爸爸”等级的存在,人类在创造力上还是属于绝对的领先。即使现在已经广泛应用的机器翻译来说,机器翻译确实已经足够的准确,但是语言的“信达雅”上,机器翻译还是有很长的路要走。

但是,毋庸置疑,人类的大脑构造本身是不适合做存储和计算的。

在审问时,当警察让嫌疑人将所有事件按照时间从近到远再重复一次时,人往往无法对刚刚编出的故事做准确的描述,因此人“记事”往往是用事情的互相关系来进行记忆的,而不只是存储时间本身,并为这些事件标记时间戳。

计算就更不用说了,现在有多少人,即使在计算二位数的加减都要依赖计算器来实现。

而机器却不一样,前几年名声大噪的AlphaGo,打败围棋各路高手,可是AlphaGo的成功是因为它“智能”吗?其实并不是如此。

围棋虽然变化多样,但是规则还是相对简单。在互相对弈的过程中,人类可能会往前演算5-7步,可是这个时候AlphaGo早已经将所有的后续发展可能性演算完成,并按照事先定义好的数据结构进行存储。

换句话说,当人类和AlphaGo在对弈过程中,机器的每步均是在当前情况下,以“最大胜率”为评价分数,将棋子放在了评价分数最高的位置上。当AlphaGo“学习”玩所有的招式后,那么人类与AlphaGo下棋,最佳的结果就是打成平手,因为AlphaGo不会犯错。

总结

总之,目前的人工智能没你想象的那么强大,但是可以比你想象的还要专业。


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355

推荐阅读更多精彩内容

  • 本文系《文工团》约稿,禁止一切形式的未授权转载,谢谢合作。这篇是约稿的第二版,第一版可以点这里。 围棋,是一项中国...
    LostAbaddon阅读 2,582评论 7 10
  • 今天的AI,我们看到太多的炫技、PPT和Demo。太多为演示而存在的产品。太多为概念而存在的公司。太多只做技术,而...
    方弟阅读 892评论 0 2
  • 这些书,这些文字,也就代表了我去年在扬州培训的2个月。换上文学的味道,也就是一段小时光,一段回忆了呢。。。让我们来...
    单日双英阅读 187评论 0 2
  • 今日体验:人生不可能是优秀的,也没有人生下来就是天才,都是在人生的旅途中慢慢发现自己的优势,并从芸芸众生中脱颖而出。
    A郑淑英阅读 107评论 0 0
  • 测试数据制造方法: 使用excel 使用第三方工具 DataFactory SQL或存储过程直接在数据库中生存数据...
    轻飏921阅读 800评论 0 0