MR

1.下载

library(withr)
with_makevars(c(PKG_CFLAGS = "-std=c11"),install_github("MRCIEU/TwoSampleMR"))
library(TwoSampleMR)

2.读取暴露文件

2.1 使用TwoSampleMR获取MR base提供的数据

(要求网络状态良好,并且需要提前知道暴露的ID号,以体质指数为例,该暴露号为‘ieu-a-2’)

bmi <-extract_instruments(outcomes='ieu-a-2',access_token = NULL) #获取暴露数据
head(bmi) #查看暴露数据

extract_instruments:此功能针对指定的结果集搜索GWAS重要SNP(对于给定的p值)。 然后,它执行基于LD的聚集以仅返回独立的重要关联

extract_instruments帮助文档

关于extract_instruments()的使用,有几个参数需要大家注意一下:
(1)第一个就是access_token这个参数,对于中国大陆地区的用户必须设置该参数为access_token=NULL,这样才能顺利获取数据,否则就需要开VPN获取谷歌授权。
(2)第二个是参数p1,它是用来指定暴露中SNP的p值的,它的默认值是p1=5e-8,因此只有p值小于5e-8的SNP才会提取出来。当然如果没有SNP小于5e-8的话,我们通常可以设置p1=1e-5,不过这个时候就需要认真评估弱工具变量偏倚了。
(3)第三个重要参数是clump以及与之相关的r2和kb,clump是一个逻辑型参数,只有clump=TRUE和clump=FALSE这两种情况。如果选择了参数值为clump=FALSE的话,那么r2和kb这两个参数就无效了,也即先不去除含有连锁不平衡的SNP。当clump=TRUE时,我们可以用r2和kb来确定去除连锁不平衡SNP的条件,具体内容我会在下期内容中进行详细讲解。默认情况下是clump=TRUE,r2=0.001和kb=10000

官方教程中数据获取地址GWAS summary data.

2.2 使用TwoSampleMR包读取本地文件

exp_dat <- read_exposure_data(
   filename = 'MICAD_gwas.txt',
   clump = FALSE,
       sep= "\t",
   snp_col = "SNPID",
    beta_col = "log_OR",
    se_col = "se",
    effect_allele_col ="effect_allele",
   other_allele_col = "other_allele",
   eaf_col = "effect_allele_freq",
   pval_col = "Pvalue"
)
head(exp_dat)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容