Hive是怎么转化hql为mr程序的

hive是怎么转化hql为MR程序的?

image.png

总的来说,Hive是通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。

  1. 用户接口:Client
    CLI(hiveshell)、JDBC/ODBC(java访问hive)、WEBUI(浏览器访问hive)
  2. 元数据:Metastore
    元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
    默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore
  3. Hadoop
    使用HDFS进行存储,使用MapReduce进行计算。
  4. 驱动器:Driver
    (1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
    (2)编译器(Physical Plan):将AST编译生成逻辑执行计划。
    (3)优化器(Query Optimizer):对逻辑执行计划进行优化。
    (4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。
  • 执行流程:

    1. ANTLR将用户提供的语法文件进行分析,转换成语法树,包含各种符号(token)和字面值;--- TOK_QUERY、TOK_FROM、TOK_SELECT等
    2. 遍历语法树,抽象出查询的基本单元块,QueryBlock,包含输入源、计算过程、输出。可以理解为子查询
    3. 遍历QueryBlock生成操作树,包含 TableScanOperator、SelectOperator等
    4. 优化器优化操作树,变换、减少MR任务数、Shuffle阶段数量等
    5. 转换为最终的MR程序提交作业。
  • 例:

explain select * from sqoop where id > 0;
Stage-0
   Fetch Operator
      limit:-1
      Select Operator [SEL_2]
         outputColumnNames:["_col0","_col1","_col2","_col3","_col4","_col5","_col6","_col7","_col8","_col9","_col10","_col11","_col12","_col13","_col14","_col15","_col16","_col17","_col18","_col19","_col20","_col21","_col22","_col23","_col24","_col25","_col26","_col27","_col28","_col29","_col30","_col31"]
         Filter Operator [FIL_4]
            predicate:(id > 0) (type: boolean)
            TableScan [TS_0]
               alias:sqoop
image.png
package com.test;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * @author phil.zhang
 * @date 2019/4/3
 */
// SELECT pageid, age, count(1) FROM TABLE GROUP BY pageid,age
public class Hive2MR {
  static class PageMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
      String data = value.toString();
        context.write(new Text(data), new IntWritable(1));

    }
  }

  static class PageReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
      int total=0;
      for (IntWritable value : values) {
        total=total+value.get();
      }
      context.write(key, new IntWritable(total));
    }
  }

  public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
    System.setProperty("hadoop.home.dir","c:\\hadoop\\2.7.3");
    Job job = Job.getInstance(new Configuration());
    job.setJarByClass(Hive2MR.class);
    job.setMapperClass(PageMapper.class);
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(IntWritable.class);
    job.setReducerClass(PageReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.setInputPaths(job,new Path("C:\\zf\\pageAge.txt"));
    FileOutputFormat.setOutputPath(job, new Path("C:\\zf\\result"));
    boolean b = job.waitForCompletion(true);
  }
}
package com.test;

import org.apache.hadoop.fs.Path;
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.rdd.RDD;
import scala.Tuple2;

/**
 * @author phil.zhang
 * @date 2019/4/3
 */
// SELECT pv.pageid, u.age FROM page_view pv JOIN user u ON (pv.userid = u.userid);

  // pgid, uid , time
  // uid, age , gender
public class Hive2Spark {

  public static void main(String[] args) {
    System.setProperty("hadoop.home.dir","c:\\hadoop\\2.7.3");
    SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("hive");
    SparkContext context = new SparkContext(conf);
    RDD<String> page = context.textFile("c:/zf/page.txt", 1);
    RDD<String> user = context.textFile("c:/zf/user.txt", 1);
    JavaPairRDD<String, String> pagePair = page.toJavaRDD()
        .map(str -> str.split(",")).mapToPair(strs -> new Tuple2<>(strs[1], strs[0]));
    for (Tuple2<String, String> tuple2 : pagePair.collect()) {
      System.out.println(tuple2._1 + ":" + tuple2._2);
    }
    JavaPairRDD<String, String> userPair = user.toJavaRDD()
        .map(str -> str.split(",")).mapToPair(strs -> new Tuple2<>(strs[0], strs[1]));
    for (Tuple2<String, String> tuple2 : userPair.collect()) {
      System.out.println(tuple2._1 + ":" + tuple2._2);
    }
    JavaPairRDD<String, Tuple2<String, String>> pairRDD = pagePair.join(userPair);
    for (Tuple2<String, Tuple2<String, String>> tuple2 : pairRDD.collect()) {
      System.out.println(tuple2._1 + ":" + tuple2._2()._1() +"," + tuple2._2()._2());
    }
    JavaRDD<String> result = pairRDD.map(pair -> pair._2()._1 + "," + pair._2()._2());
    for (String s : result.collect()) {
      System.out.println(s);
    }
  }
}
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 睫毛是怎么回事? 有趣的是,在我们尚未出生的时睫毛就开始生长了,因此婴儿生下来就有睫毛。睫毛主要由占97%的角蛋白...
    我爱雨果阅读 1,661评论 0 3
  • 话语权加持的理由才是最强有力的。 武碧月是铁了心要让肖岩离开了,而肖岩却是对她为什么会对自己出手的真正原因蒙在鼓里...
    黔工匠曾旭阅读 297评论 0 0
  • 高中,我几乎每天都在困倦中度过。早上五点半起床,拖着没睡醒的身子去洗漱、吃饭、稍微精神点儿了,又进入闷哄哄的教室。...
    逸黎阅读 463评论 4 11
  • 首先通过README.md,很容易发现任务列表只有3个: DEC.INT to BIN.COMPLEMENTDEC...
    LLongIsland阅读 402评论 1 3