跟着Nature Communication学作图:R语言ggpubr包画箱线图并添加显著性P值

论文

Microbiomes in the Challenger Deep slope and bottom-axis sediments

https://www.nature.com/articles/s41467-022-29144-4#code-availability

对应代码链接

https://github.com/ucassee/Challenger-Deep-Microbes

论文里提供了大部分图的数据和代码,很好的学习材料,感兴趣的同学可以找来参考,今天的推文重复一下论文中的Figure1b

论文中提供的代码是用ggpubr这个R包实现的,如果比较着急要结果可以使用这个R包来作图,如果是学习为目的,还是推荐ggplot2的基础

部分数据集截图

image.png

读取数据集

dat<-read.delim("data/20220602/NCfigure1b.txt",
                header = TRUE,
                check.names = FALSE,
                sep="\t")
head(dat)

带有百分号读取进来是字符,我们把它转换成数字

library(tidyverse)


dat %>% 
  mutate(`Novel 16s miTags (%)` = dat$`Novel 16s miTags (%)` %>%  parse_number()) -> dat01

对表示分组的文本进行处理

dat01 %>% 
  mutate(group=case_when(
    Group == "Bottom-axis" ~ "Bottom",
    Group == "Slope" ~ "Slope",
    Group == "Mariana Water" ~ "Mariana Water",
    TRUE ~ "Deep sea"
  )) -> dat02

赋予因子水平

dat02$group <- factor(dat02$group, 
                      levels=c("Bottom", "Slope","Deep sea", "Mariana Water"), 
                      ordered=TRUE)
table(dat02$group)

作图代码

p1<- ggboxplot(dat02, x="group", y="Novel 16s miTags (%)", 
               fill = "group", width = 0.5,
               xlab = "",
               palette = c("#F8766D","#00BFC4","#FEFF99","#B14A87"))+
  ylab(label = "Novel 16S miTags (%)")+
  #scale_y_continuous(labels = scales::percent)+
  guides(fill=F)+
  scale_x_discrete(labels = c("Bottom\naxis\n(n=17)", 
                              "Slope\n(n=20)",
                              "Deep\nsed\n(n=20)",
                              "Mariana\nwater\n(n=7)"))+
  theme(axis.text = element_text(size=10,family="serif"))+
  stat_compare_means(comparisons=p1_comparisons,
                     label.y = c( 48, 53,40, 58),  
                     method = "wilcox.test",size=3) # Add pairwise comparisons p-value 
p1
image.png

试一下论文中提供的拼图代码

library(cowplot)
aligned_plots<- align_plots(p1, p1,align="h")
ggdraw( xlim = c(0, 1.1), ylim = c(0, 0.30))+
  draw_plot(aligned_plots[[1]], x=0,y=0,  width=0.5, height = 0.28)+
  draw_plot(aligned_plots[[2]], x=0.50,y=0, width = 0.5, height = 0.28)
image.png

示例数据和代码可以在公众号后台留言20220608获取

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容