动手学深度学习(一)——基本介绍

文章作者:Tyan
博客:noahsnail.com  |  CSDN  |  简书

本文主要是学习李沐直播课程的笔记。视频及内容的具体地址可参考:https://zhuanlan.zhihu.com/p/29125290

第一课:从上手到多类分类

课程首先介绍了深度学习的很多应用:例如增强学习、物体识别、语音识别、机器翻译、推荐系统、广告点击预测等。

课程目的:通过动手实现来理解深度学习,跟工业界应用相比,主要只是数据规模和模型复杂度的区别。

深度学习的轮子很多,例如Caffe,TensorFlow,mxnet,PyTorch,CNTK等。它们之间的主要区别在于:1.便利的开发;2.方便的部署。

Figure 1

mxnet之上的一个package是Gluon,主要目的是一次解决开发和部署。课程主要分为以下三个部分:

Figure 2

1. 环境配置

我的配置环境是Mac,Linux平台类似。

mxnet安装命令如下,前提是已经安装好了Anaconda,Anaconda的安装可以参考官网:

pip install mxnet

测试mxnet:

>>> import mxnet
>>> print mxnet.__version__
0.11.0

然后安装notedown,运行Jupyter并加载notedown插件:

pip install https://github.com/mli/notedown/tarball/master
jupyter notebook --NotebookApp.contents_manager_class='notedown.NotedownContentsManager'

通过ExecutionTime插件来对每个cell的运行计时,国内使用豆瓣源。

pip install jupyter_contrib_nbextensions -i https://pypi.douban.com/simple
jupyter contrib nbextension install --user
jupyter nbextension enable execute_time/ExecuteTime

2. NDArray

NDArray是MXNet储存和变换数据的主要工具,它与numpy非常类似。NDArray提供了CPU和GPU的异步计算,还提供了自动求导。NDArray的基本用法:

from mxnet import ndarray as nd

# 创建矩阵
nd.zeros((3, 4))
x = nd.ones((3, 4))
nd.array([[1,2],[2,3]])
y = nd.random_normal(0, 1, shape=(3, 4))

# 查看矩阵大小
y.shape

# 查看矩阵元素个数
y.size

# 矩阵加法
x + y

# 矩阵乘法
x * y

# 指数运算
nd.exp(y)

# 矩阵乘法
nd.dot(x, y.T)

# 广播操作
a = nd.arange(3).reshape((3,1))
b = nd.arange(2).reshape((1,2))
print('a:', a)
print('b:', b)
print('a+b:', a+b)

# NDArray与Numpy的转换
import numpy as np
x = np.ones((2,3))
y = nd.array(x)  # numpy -> mxnet
z = y.asnumpy()  # mxnet -> numpy
print([z, y])

NDArray的自动求导:

import mxnet.ndarray as nd
import mxnet.autograd as ag


# 定义矩阵
x = nd.array([[1, 2], [3, 4]])

# 添加自动求导
x.attach_grad()


# 记录x的变化
with ag.record():
    y = x * 2
    z = y * x

# 求导
z.backward()

# 判断导数是否相等
x.grad == 4*x
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容