多标签分类怎么做?(Python)

一、基本介绍

首先简单介绍下,多标签分类与多分类、多任务学习的关系:

  • 多分类学习(Multi-class):分类器去划分的类别是多个的,但对于每一个样本只能有一个类别,类别间是互斥的。例如:分类器判断这只动物是猫、狗、猪,每个样本只能有一种类别,就是一个三分类任务。常用的做法是OVR、softmax多分类
  • 多标签学习(Multi-label ):对于每一个样本可能有多个类别(标签)的任务,不像多分类任务的类别是互斥。例如判断每一部电影的标签可以是多个的,比如有些电影标签是【科幻、动作】,有些电影是【动作、爱情、谍战】。需要注意的是,每一样本可能是1个类别,也可能是多个。而且,类别间通常是有所联系的,一部电影有科幻元素 同时也大概率有动作篇元素的。


  • 多任务学习(Multi-task):
    基于共享表示(shared representation),多任务学习是通过合并几个任务中的样例(可以视为对参数施加的软约束)来提高泛化的一种方式。额外的训练样本以同样的方式将模型的参数推向泛化更好的方向,当模型的一部分在任务之间共享时,模型的这一部分更多地被约束为良好的值(假设共享是合理的),往往能更好地泛化。某种角度上,多标签分类可以看作是一种多任务学习的简单形式。


二、多标签分类实现

实现多标签分类算法有DNN、KNN、ML-DT、Rank-SVM、CML,像决策树DT、最近邻KNN这一类模型,从原理上面天然可调整适应多标签任务的(多标签适应法),按同一划分/近邻的客群中各标签的占比什么的做下排序就可以做到了。

这里着重介绍下,比较通用的多标签实现思路,大致有以下4种:

方法一:多分类思路

简单粗暴,直接把不同标签组合当作一个类别,作为一个多分类任务来学习。如上述 【科幻、动作】、【动作、爱情、谍战】、【科幻、爱情】就可以看作一个三分类任务。这种方法前提是标签组合是比较有限的,不然标签会非常稀疏没啥用。

方法二:OVR二分类思路

也挺简单的。将多标签问题转成多个二分类模型预测的任务。如电影总的子标签有K个,划分出K份数据,分别训练K个二分类模型,【是否科幻类、是否动作类....第K类】,对于每个样本预测K次打出最终的标签组合。

这种方法简单灵活,但是缺点是也很明显,各子标签间的学习都是独立的(可能是否科幻类对判定是否动作类的是有影响),忽略了子标签间的联系,丢失了很多信息。

对应的方法有sklearn的OneVsRestClassifier方法,

from xgboost import XGBClassifier
from sklearn.multiclass import OneVsRestClassifier
import numpy as np

clf_multilabel = OneVsRestClassifier(XGBClassifier())

train_data = np.random.rand(500, 100)  # 500 entities, each contains 100 features
train_label = np.random.randint(2, size=(500,20))  # 20 targets

val_data = np.random.rand(100, 100)

clf_multilabel.fit(train_data,train_label)
val_pred = clf_multilabel.predict(val_data)

方法三:二分类改良

在方法二的基础上进行改良,即考虑标签之间的关系。 每一个分类器的预测结果将作为一个数据特征传给下一个分类器,参与进行下一个类别的预测。该方法的缺点是分类器之间的顺序会对模型性能产生巨大影响。

方法四:多个输出的神经网络

这以与多分类方法类似,但不同的是这里神经网络的多个输出,输出层由多个的sigmoid+交叉熵组成,并不是像softmax各输出是互斥的。

如下构建一个输出为3个标签的概率的多标签模型,模型是共用一套神经网络参数,各输出的是独立(bernoulli分布)的3个标签概率

## 多标签 分类
from keras.models import Model
from keras.layers import Input,Dense

inputs = Input(shape=(15,))
hidden = Dense(units=10,activation='relu')(inputs)
output = Dense(units=3,activation='sigmoid')(hidden)
model=Model(inputs=inputs, outputs=output)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.summary()

# 训练模型,x特征,y为多个标签
model.fit(x, y.loc[:,['LABEL','LABEL1','LABEL3']], epochs=3)

通过共享的模型参数来完成多标签分类任务,在考虑了标签间的联系的同时,共享网络参数可以起着模型正则化的作用,可能对提高模型的泛化能力有所帮助的(在个人验证中,测试集的auc涨了1%左右)。这一点和多任务学习是比较有联系的,等后面有空再好好研究下多任务。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,390评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,821评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,632评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,170评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,033评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,098评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,511评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,204评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,479评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,572评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,341评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,213评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,576评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,893评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,171评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,486评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,676评论 2 335

推荐阅读更多精彩内容