2020-01-16-Forestplot包定制森林图

获取示例数据

如果能够提供回归分析的结果,特别是使用非ascii字母会很方便。 在本节中,示例数据是研究比较瑞典和丹麦之间进行全髋关节置换术后1年与健康相关的生活质量预后评估的比较:

library(forestplot)
data(HRQoL)
clrs <- fpColors(box="royalblue",line="darkblue", summary="royalblue")
tabletext <- 
  list(c(NA, rownames(HRQoL$Sweden)),
       append(list(expression(beta)), sprintf("%.2f", HRQoL$Sweden[,"coef"])))
forestplot(tabletext, 
           rbind(rep(NA, 3), 
                 HRQoL$Sweden),
           col=clrs,
           xlab="EQ-5D index")
image.png

更改字体设置

换个字体换种风格:

tabletext <- cbind(rownames(HRQoL$Sweden),
                   sprintf("%.2f", HRQoL$Sweden[,"coef"]))
forestplot(tabletext, 
           txt_gp = fpTxtGp(label = gpar(fontfamily = "HersheyScript")),
           rbind(HRQoL$Sweden),
           col=clrs,
           xlab="EQ-5D index")
image.png

在gp-styles中还有选择的可能性:

forestplot(tabletext, 
           txt_gp = fpTxtGp(label = list(gpar(fontfamily = "HersheyScript"),
                                         gpar(fontfamily = "",
                                              col = "#660000")),
                            ticks = gpar(fontfamily = "", cex=1),
                            xlab  = gpar(fontfamily = "HersheySerif", cex = 1.5)),
           rbind(HRQoL$Sweden),
           col=clrs,
           xlab="EQ-5D index")
image.png

置信区间

对于不确定的估计,为了保持更感兴趣的估计的分辨率,对区间进行修剪是很方便的。裁剪只是在置信区间中添加一个箭头,请参见下面的最低估计值:

forestplot(tabletext, 
           rbind(HRQoL$Sweden),
           clip =c(-.1, Inf),
           col=clrs,
           xlab="EQ-5D index")
image.png

多个置信区间

当将相同曝露的相似结果组合在一起时,我发现每行使用多个波段是很有用的。这有效地增加了数据覆盖度,同时使两个波段之间的比较变得微不足道。作者在他的文章通过全髋关节置换术后1年对瑞典和丹麦患者进行了比较。在这里,由于丹麦样本要小得多,所以剪辑也变得很明显,从而产生了更宽的置信区间。

tabletext <- tabletext[,1]
forestplot(tabletext, 
           mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]),
           lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]),
           upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]),
           clip =c(-.1, 0.075),
           col=fpColors(box=c("blue", "darkred")),
           xlab="EQ-5D index")
image.png

估算指标

用户可以在多个不同的评估指标之间进行选择。使用上面的示例,我们可以将丹麦语结果设置为圆圈。

forestplot(tabletext, 
            fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI),
            boxsize = .25, # We set the box size to better visualize the type
            line.margin = .1, # We need to add this to avoid crowding
            mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]),
            lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]),
            upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]),
            clip =c(-.125, 0.075),
            col=fpColors(box=c("blue", "darkred")),
            xlab="EQ-5D index")
image.png

置信区间/框绘制功能是完全可定制的。您可以编写自己的函数来接受参数:lower_limit, estimate, upper_limit, size, y.offset, clr.line, clr.marker和 lwd

选择线型

用户还可以通过指定为特定于元素的*lty.ci*命令在所有可用行类型之间进行选择。

forestplot(tabletext, 
            fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI),
            boxsize = .25, # We set the box size to better visualize the type
            line.margin = .1, # We need to add this to avoid crowding
            mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]),
            lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]),
            upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]),
            clip =c(-.125, 0.075),
            lty.ci = c(1, 2),
            col=fpColors(box=c("blue", "darkred")),
            xlab="EQ-5D index")
image.png

Legends

Adding a basic legend is done through the legend argument:

forestplot(tabletext, 
           legend = c("Sweden", "Denmark"),
           fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI),
           boxsize = .25, # We set the box size to better visualize the type
           line.margin = .1, # We need to add this to avoid crowding
           mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]),
           lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]),
           upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]),
           clip =c(-.125, 0.075),
           col=fpColors(box=c("blue", "darkred")),
           xlab="EQ-5D index")
image.png

This can be further customized by setting the legend_args argument using the fpLegend function:

forestplot(tabletext, 
           legend_args = fpLegend(pos = list(x=.85, y=0.25), 
                                  gp=gpar(col="#CCCCCC", fill="#F9F9F9")),
           legend = c("Sweden", "Denmark"),
           fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI),
           boxsize = .25, # We set the box size to better visualize the type
           line.margin = .1, # We need to add this to avoid crowding
           mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]),
           lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]),
           upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]),
           clip =c(-.125, 0.075),
           col=fpColors(box=c("blue", "darkred")),
           xlab="EQ-5D index")
image.png

刻度和网格

如果默认记号与所需值不匹配,则只需使用xticks参数即可轻松更改这些记号:

forestplot(tabletext, 
           legend = c("Sweden", "Denmark"),
           fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI),
           boxsize = .25, # We set the box size to better visualize the type
           line.margin = .1, # We need to add this to avoid crowding
           mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]),
           lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]),
           upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]),
           clip =c(-.125, 0.075),
           col=fpColors(box=c("blue", "darkred")),
           xticks = c(-.1, -0.05, 0, .05),
           xlab="EQ-5D index")
image.png

通过向刻度添加labels属性,用户可以进一步定制刻度,下面是每隔一个刻度定制刻度文本的示例:

xticks <- seq(from = -.1, to = .05, by = 0.025)
xtlab <- rep(c(TRUE, FALSE), length.out = length(xticks))
attr(xticks, "labels") <- xtlab
forestplot(tabletext, 
           legend = c("Sweden", "Denmark"),
           fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI),
           boxsize = .25, # We set the box size to better visualize the type
           line.margin = .1, # We need to add this to avoid crowding
           mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]),
           lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]),
           upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]),
           clip =c(-.125, 0.075),
           col=fpColors(box=c("blue", "darkred")),
           xticks = xticks,
           xlab="EQ-5D index")
image.png

有时,当用户绘制了一个非常高的图形,又想要添加辅助线,以便更容易地看到刻度线。这在非劣势或等价性研究中很有用。则可以通过更改grid参数来实现:

forestplot(tabletext, 
           legend = c("Sweden", "Denmark"),
           fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI),
           boxsize = .25, # We set the box size to better visualize the type
           line.margin = .1, # We need to add this to avoid crowding
           mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]),
           lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]),
           upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]),
           clip =c(-.125, 0.075),
           col=fpColors(box=c("blue", "darkred")),
           grid = TRUE,
           xticks = c(-.1, -0.05, 0, .05),
           xlab="EQ-5D index")
image.png

通过将gpar对象添加到矢量中,您可以轻松地自定义要使用的网格线以及网格线的类型:

forestplot(tabletext, 
           legend = c("Sweden", "Denmark"),
           fn.ci_norm = c(fpDrawNormalCI, fpDrawCircleCI),
           boxsize = .25, # We set the box size to better visualize the type
           line.margin = .1, # We need to add this to avoid crowding
           mean = cbind(HRQoL$Sweden[, "coef"], HRQoL$Denmark[, "coef"]),
           lower = cbind(HRQoL$Sweden[, "lower"], HRQoL$Denmark[, "lower"]),
           upper = cbind(HRQoL$Sweden[, "upper"], HRQoL$Denmark[, "upper"]),
           clip =c(-.125, 0.075),
           col=fpColors(box=c("blue", "darkred")),
           grid = structure(c(-.1, -.05, .05), 
                            gp = gpar(lty = 2, col = "#CCCCFF")), 
           xlab="EQ-5D index")
image.png

如果您不熟悉结构调用,则相当于生成一个向量,然后设置一个属性,例如:

grid_arg <- c(-.1, -.05, .05) 
attr(grid_arg, "gp") <- gpar(lty = 2, col = "#CCCCFF")
identical(grid_arg, 
          structure(c(-.1, -.05, .05), 
                    gp = gpar(lty = 2, col = "#CCCCFF")))
# Returns TRUE

好了,就这些. 作者希望这个 forestplot 包对你有用.
参考:https://github.com/gforge/forestplot

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,185评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,652评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,524评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,339评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,387评论 6 391
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,287评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,130评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,985评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,420评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,617评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,779评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,477评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,088评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,716评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,857评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,876评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,700评论 2 354

推荐阅读更多精彩内容

  • 资料来源:https://github.com/BrambleXu/pydata-notebook 信息可视化(也...
    林清猫耳阅读 1,555评论 0 3
  • 图表控件库 MPAndroidChart 的使用 使用方法 项目源码地址,包含了很多类型的图标 https://g...
    jinchuang阅读 819评论 0 0
  • 本章节以及后续章节的源码,当然也可以从我的github下载,在源码中我自己加了一些中文注释。 这两天没更新,好好反...
    owolf阅读 1,533评论 0 4
  • 上一篇我们学习过了matplotlib库,现在我们学习一下seaborn库,seaborn是基于matplotli...
    风之舟阅读 3,764评论 0 27
  • 期末考试马上就要到了,体育课停课了,所有的训练也停下了。连昔没有很好的借口见吴梦了,吴梦也不想打扰连昔,希望她好好...
    班杰瑞阅读 278评论 0 0