elasticsearch 基础入门(三)

https://www.elastic.co/guide/cn/elasticsearch/guide/cn/inverted-index.html

倒排索引

Elasticsearch 使用一种称为 倒排索引 的结构,它适用于快速的全文搜索。一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,有一个包含它的文档列表。

例如,假设我们有两个文档,每个文档的 content 域包含如下内容:

  1. The quick brown fox jumped over the lazy dog
  2. Quick brown foxes leap over lazy dogs in summer

为了创建倒排索引,我们首先将每个文档的 content 域拆分成单独的词(我们称它为 词条tokens),创建一个包含所有不重复词条的排序列表,然后列出每个词条出现在哪个文档。结果如下所示:

Term      Doc_1  Doc_2
-------------------------
Quick   |       |  X
The     |   X   |
brown   |   X   |  X
dog     |   X   |
dogs    |       |  X
fox     |   X   |
foxes   |       |  X
in      |       |  X
jumped  |   X   |
lazy    |   X   |  X
leap    |       |  X
over    |   X   |  X
quick   |   X   |
summer  |       |  X
the     |   X   |
------------------------

现在,如果我们想搜索 quick brown ,我们只需要查找包含每个词条的文档:

Term      Doc_1  Doc_2
-------------------------
brown   |   X   |  X
quick   |   X   |
------------------------
Total   |   2   |  1

两个文档都匹配,但是第一个文档比第二个匹配度更高。如果我们使用仅计算匹配词条数量的简单 相似性算法 ,那么,我们可以说,对于我们查询的相关性来讲,第一个文档比第二个文档更佳。

但是,我们目前的倒排索引有一些问题:

  • Quickquick 以独立的词条出现,然而用户可能认为它们是相同的词。
  • foxfoxes 非常相似, 就像 dogdogs ;他们有相同的词根。
  • jumpedleap, 尽管没有相同的词根,但他们的意思很相近。他们是同义词。

使用前面的索引搜索 +Quick +fox 不会得到任何匹配文档。(记住,+ 前缀表明这个词必须存在。)只有同时出现 Quickfox 的文档才满足这个查询条件,但是第一个文档包含 quick fox ,第二个文档包含 Quick foxes

我们的用户可以合理的期望两个文档与查询匹配。我们可以做的更好。

如果我们将词条规范为标准模式,那么我们可以找到与用户搜索的词条不完全一致,但具有足够相关性的文档。例如:

  • Quick 可以小写化为 quick
  • foxes 可以 词干提取 --变为词根的格式-- 为 fox 。类似的, dogs 可以为提取为 dog
  • jumpedleap 是同义词,可以索引为相同的单词 jump

现在索引看上去像这样:

Term      Doc_1  Doc_2
-------------------------
brown   |   X   |  X
dog     |   X   |  X
fox     |   X   |  X
in      |       |  X
jump    |   X   |  X
lazy    |   X   |  X
over    |   X   |  X
quick   |   X   |  X
summer  |       |  X
the     |   X   |  X

这还远远不够。我们搜索 +Quick +fox 仍然 会失败,因为在我们的索引中,已经没有 Quick 了。但是,如果我们对搜索的字符串使用与 content 域相同的标准化规则,会变成查询 +quick +fox ,这样两个文档都会匹配!

这非常重要。你只能搜索在索引中出现的词条,所以索引文本和查询字符串必须标准化为相同的格式。

分析与分析器
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容