机器学习笔记:

OneHotEncoder独热编码和 LabelEncoder标签编码

转自https://www.cnblogs.com/king-lps/p/7846414.html
独热码的例子:

enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])    # fit来学习编码
enc.transform([[0, 1, 3]]).toarray()    # 进行编码
输出:array([[ 1.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.]])

数据矩阵是4*3,即4个数据,3个特征维度。

0 0 3   观察左边的数据矩阵,第一列为第一个特征维度,有两种取值0\1. 所以对应编码方式为10 、01

1 1 0  同理,第二列为第二个特征维度,有三种取值0\1\2,所以对应编码方式为100、010、001

0 2 1   同理,第三列为第三个特征维度,有四中取值0\1\2\3,所以对应编码方式为1000、0100、0010、0001

1 0 2  再来看要进行编码的参数[0 , 1,  3], 0作为第一个特征编码为10,  1作为第二个特征编码为010, 3作为第三个特征编码为0001.  故此编码结果为 1 0 0 1 0 0 0 0 1

利用LabelEncoder() 将转换成连续的数值型变量:

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit([1,5,67,100])
le.transform([1,1,100,67,5])
输出: array([0,0,3,2,1])

为什么要独热编码?

  正如上文所言,独热编码(哑变量 dummy variable)是因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到圆点是等距的。使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。       

    为什么特征向量要映射到欧式空间?

    将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

三 .独热编码优缺点

优点:独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。
缺点:当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。

四. 什么情况下(不)用独热编码?

用:独热编码用来解决类别型数据的离散值问题,
不用:将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。 有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码。 Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度。
总的来说,要是one hot encoding的类别数目不太多,建议优先考虑。
五. 什么情况下(不)需要归一化?

需要: 基于参数的模型或基于距离的模型,都是要进行特征的归一化。
不需要:基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等。

标准化

from sklearn.preprocessing import StandardScaler
 #标准化,返回值为标准化后的数据
StandardScaler().fit_transform(iris.data)

区间缩放法

from sklearn.preprocessing import MinMaxScaler

#区间缩放,返回值为缩放到[0, 1]区间的数据
MinMaxScaler().fit_transform(iris.data)

归一化

from sklearn.preprocessing import MinMaxScaler

#区间缩放,返回值为缩放到[0, 1]区间的数据
MinMaxScaler().fit_transform(iris.data)

归一化
简单来说,标准化是依照特征矩阵的列处理数据,其通过求z-score的方法,将样本的特征值转换到同一量纲下。归一化是依照特征矩阵的行处理数据,其目的在于样本向量在点乘运算或其他核函数计算相似性时,拥有统一的标准,也就是说都转化为“单位向量”。规则为l2的归一化公式如下:

二值化

from sklearn.preprocessing import Binarizer

#二值化,阈值设置为3,返回值为二值化后的数据
Binarizer(threshold=3).fit_transform(iris.data)

数据变换及其意义

pandas的切片操作

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,761评论 5 460
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,953评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,998评论 0 320
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,248评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,130评论 4 356
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,145评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,550评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,236评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,510评论 1 291
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,601评论 2 310
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,376评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,247评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,613评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,911评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,191评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,532评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,739评论 2 335

推荐阅读更多精彩内容