贝叶斯滤波(一)二维连续型随机变量的条件分布函数与贝叶斯公式


一. 二维离散型随机变量的条件分布

已知(X, Y)是二维离散型随机变量,其联合概率函数为

        p_{ij} = P(X = x_{i},Y = y_{j}),i,j = 1,2,3,...,

对于给定的Y = y,则有在Y = y的条件下随机变量X的条件概率函数:

        p_{X|Y}(x_{i}|y) = P(X = x_{i}|Y = y) = \frac {P(Y = y,X = x_{i})}{P(Y = y)} = \frac{P(Y=y|X=x_{i})P(X=x_{i})}{P(Y = y)},i=1,2,3,...

通过全概率公式对分母进行展开,可得离散型随机变量的贝叶斯公式:

        p_{X|Y}(x_{i}|y) = \frac{P(Y=y_{j}|X=x_{i})P(X=x_{i})}{\sum_{j=1}^{n}P(Y=y_{j}|X=x_{j})P(X=x_{j})},i=1,2,3,...

看到这里,有许多人就会说由于X, Y的分布是离散的,所以在分母处用的是求和符号\Sigma ,而如果X, Y的分布是连续的,就可以

把分母处换成积分符号,然后就能得到连续型随机变量的贝叶斯公式:

        p_{X|Y}(x|y) = \frac{p(y|x)p_{X}(x)}{p_{Y}(y)} = \frac{p(y|x)p_{X}(x)}{\int_{-\infty }^{+\infty }p(y|x)p(x)dx}

是这样的吗?请往下看,虽然结论是对的,但是需要经过一定量的推导才能得出,直接类比过去是没有根据的。


二. 二维连续型随机变量的条件分布

给定的Y=y的情况下,随机变量X的条件分布函数记为:

        F_{X|Y}(x|y) = P(X \leqslant = x|Y =y)

在这里我们跟二维离散型进行一个类比,如果把连续型随机变量X的条件分布也写成离散型的格式:

        F_{X|Y}(x|y) = P(X \leqslant = x|Y =y) = \frac{P(X\leqslant x,Y =y)}{P(Y = y)} = \frac{P(Y =y|X\leqslant x)P(X\leqslant x)}{P(Y = y)}

由于Y是一个连续型随机变量,在Y = y时,P(Y =y)发生的概率为0,所以通过条件概率的定义进行

求解连续型随机变量的条件分布是走不通的,是无法进行条件概率计算的。

但是我们可以通过极限的做法做一点变形来进行求解,假设y<Y<y+\Delta y,这样就把问题从连续型随机变量在一点Y =

的概率转化为连续型随机变量在y<Y<y+\Delta y这个区域内的概率分布函数:

        F_{X|Y}(x|y)= \lim_{\Delta y \rightarrow 0}P(X \leqslant = x|y<Y<y+\Delta y)

                             = \lim_{\Delta y \rightarrow 0} \frac{P(X \leqslant = x,y<Y<y+\Delta y) }{P(y<Y<y+\Delta y)}

根据联合分布函数与联合概率密度函数关系可知,对联合概率密度函数进行二重积分可得联合分布函数,此处设联合概率密度函数为p(x,y);

根据边缘分布函数与边缘概率密度函数关系可知,对边缘概率密度函数进行一重积分可得边缘分布函数,此处设边缘概率密度函数为p_{Y}(y).

                                     = \lim_{\Delta y \rightarrow 0} \frac{\int_{-\infty }^{x}\int_{y}^{y+\Delta y}p(x,y)dydx}{\int_{y}^{y+\Delta y}p_{Y}(y)dy}

(根据积分中值定理可知,存在一个点,可以将\int_{y}^{y+\Delta y}f(y)dy含有\Delta y形式的积分等效为乘积的方式,即等效为f(y+\varepsilon \Delta y)\cdot \Delta y, \ (0<\varepsilon<1)这种形式)

                                     = \lim_{\Delta y \rightarrow 0} \frac{\int_{-\infty }^{x}p(x,y+\varepsilon_{0}\Delta y)\Delta ydx}{p_{Y}(y+\varepsilon_{1}\Delta y)\Delta y} \ (0<\varepsilon_{0}<1,0<\varepsilon_{1}<1)

分子分母同时约掉一个\Delta y

                                     = \lim_{\Delta y \rightarrow 0} \frac{\int_{-\infty }^{x}p(x,y+\varepsilon_{0}\Delta y)dx}{p_{Y}(y+\varepsilon_{1}\Delta y)} \ (0<\varepsilon_{0}<1,0<\varepsilon_{1}<1)

因为\lim_{\Delta y \rightarrow 0},且Y是连续随机变量,所以把\varepsilon_{0}\Delta y = 0, \varepsilon_{1}\Delta y = 0,代入式子

                                     = \frac{\int_{-\infty }^{x}p(x,y)dx}{p_{Y}(y)}

推导到此处,可以看到积分处仅剩分子对从-\inftyxx进行积分,分母里面不含有x的变量,因此对x积分分母可以看做一个常数,所以可以把积分提取出来,最终得到F_{X|Y}(x|y)的概率分布函数为

                                     F_{X|Y}(x|y) = \int_{-\infty }^{x}\frac{p(x,y)}{p_{Y}(y)}dx

仔细观察等式左右边,都是关于x的函数,而左边是一个分布函数,右边又是对一个关于x的函数从-\inftyx进行积分,对\frac{p(x,y)}{p_{Y}(y)}进行积分得到分布函数,因此我们可以得出\frac{p(x,y)}{p_{Y}(y)}就为Y=y条件下X的条件概率密度函数

F_{X|Y}(x|y) = \int_{-\infty }^{x}\frac{p(x,y)}{p_{Y}(y)}dx等式两边同时求导,可得Y=y条件下X的条件概率密度函数为

                                     p_{X|Y}(x|y) = \frac{p(x,y)}{p_{Y}(y)} = \frac{p(y|x)p_{X}(x)}{p_{Y}(y)}

对上式分母的p(y),可以通过全概率公式展开

                                     p_{X|Y}(x|y) = \frac{p(y|x)p_{X}(x)}{p_{Y}(y)} = \frac{p(y|x)p_{X}(x)}{\int_{-\infty }^{+\infty }p(y|x)p(x)dx}

可以看到该式与离散型随机变量的概率分布是非常相似的,但是相似并不代表可以直接类比,可以看到,我们是经过了相对复杂的推导才得出的结论。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,496评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,407评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,632评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,180评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,198评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,165评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,052评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,910评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,324评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,542评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,711评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,424评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,017评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,668评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,823评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,722评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,611评论 2 353

推荐阅读更多精彩内容