不知不觉中你也用了微积分
如果你脑子里边能稍微加入一点点想象力,加入一个无穷的概念,就能立刻理解微积分是怎么回事。我举一个例子,您一定知道古人很想研究圆。因为古人的测量都是为了分地,那个地未必都是方的,有时候会有那种弧形的、圆形的,所以古人就想了解圆到底应该怎么算。
周长大家比较容易了解,周长就是我做一个圆形的饼,我拿一根绳子绕着它这么转一圈,然后把这个绳子拿出来一量,就知道这个圆的周长了。所以基本上古人是可以测量得出一个圆的周长的。那怎么测量这个圆的面积?不能用绳子去测量圆的面积,所以我们就必须得发现圆的面积公式。
大家学过周长的公式,叫作π×d。πd是怎么算出来的呢?把周长测出来,然后把直径测出来,用周长除以直径,得到的数就是π,所以π就是圆周率。那你有没有想过为什么面积会是πr²,而不是πd²?这就是微积分的思想。你想象这是一个圆,我想知道它的面积,怎么办呢?你想象像切西瓜一样,沿着它的中心,切成一牙一牙的西瓜。然后你把它掰开,上半截就变成了一个向下的锯齿,下半截就变成了一个向上的锯齿。然后你把上半截和下半截对在一块儿,成了一个什么形状呢?类似于一个长方形。
但是这个长方形的上边不是一条直线,而是一个一个的弧度。那假如你把这个西瓜切到非常薄,薄到极限,那个弧度是不是就变成了一个一个的点?用弧度构成的这条边,是不是就变成了一条趋近于直线的东西?
这时候你发现,圆如果可以被切到无穷块,那它将会成为一个相当标准的矩形。请问这个矩形的高是多少呢?是半径。那个长的一边呢?是二分之一个周长,也就是πd÷2。πd÷2不就是πr吗?再乘以半径,得出是πr²。现在大家知道πr²是怎么来的了吗?就是通过切分想象出来的。所以古人能通过切分到无穷的程度,想象出来这么一个构造,解决了测量圆面积的问题,这就是微积分的思想。
你朝一面墙走,每次走1/2,永远走不到那面墙跟前。为什么呢?因为你要走到那儿去,必然走过中间的一半,你走过这个一半以后,必然得走过那个中间的一半,也就是1/4的地方。然后你得再走过1/8的地方、1/16的地方、1/32的地方……你永远都得走过你和这个墙中间距离的一半的位置。
所以就算再小,你和墙之间都隔着一个微小的一半,所以你走不到那面墙跟前去。这种想法会把人类折磨疯,因为大家觉得有道理,听起来好像是走不过去,但现实中你一下子就走到那儿去了,原因是什么呢?
这里边有个极限的问题,极限是一个特别好玩的事。当你把那个圆的边长想象成平的的时候,请问对吗?我告诉你一定不对。因为它肯定不是平的,它是个极限,所以你要抵抗一种诱惑——把极限想象成是0的诱惑。那虽然是个很小的点,但绝不是0。如果它是0,导致的结果就是整个世界会混乱。
所以大家就理解了,为什么从小学数学的时候,老师反复跟你强调一件事,说是古人规定的,0不能做分母。为什么?2÷0等于几?没这样的题。因为2÷0等于无穷,3÷0也等于无穷,10÷0也等于无穷,那结论是什么?2=3=10,全等于,全世界都一样,这很明显是错的。所以除数为0会召唤出无穷,这个无穷就会导致整个世界的逻辑混乱,就意味着这个杯子跟桌子是相等的,因为它们除以0都一样。
阿基米德还算出了抛物线弓形的面积。咱们现在会算抛物线下边的面积,有公式就能算得出来。那如果在抛物线的顶上切一刀,这上面就形成了一个不规则的弓形,这个弓形的面积怎么算?
那时候也没有微积分的工具,所以他的办法是在这个弓形内画一个三角形,但是两边多出两个耳朵,这两个耳朵怎么办呢?再画两个三角形,这不就又接近一点了吗?把面积又抠小了一点,又多出四个小耳朵,再画四个三角形,然后把这个三角形无穷无尽地画下去,最后一直画到什么程度呢?画到无穷小的程度,把那个极小值忽略掉,得到的几乎就是那个弓形的面积了。因为无法用无穷来算,所以这个叫作忽略极小值。这就是阿基米德当年所用的研究弓形面积的方法。
也就是说其中的人物有多清晰,取决于他们用的那个小三角形有多小,当那个三角形小到足够小的时候,就和一条完美的弧线是一样的。所以直到今天,阿基米德所用的这个方法,我们的计算机和数学建模依然在用,只不过计算机增加了它运算的能力,多了不起!
现在大家对无穷有概念了,无穷是了解微积分的第一步。你得能够想象出一个无穷小,但它不是0,然后去模拟接下来的运动。运动之谜的奠基人是伽利略。伽利略认为宇宙是一部伟大的著作,而这部著作是用数学的语言写成的。就是说你如果不懂数学,你无法读懂这个宇宙。
伽利略还去看钟摆的摆动。他发现无论钟摆的摆幅多少,所用时间都是一样的。伽利略是怎么发现的呢?那时候没有手表,伽利略是摸着脉搏做的实验,没有伽利略的研究,后面就不可能有手表。包括全球定位系统的原型、我们今天用到的原子钟,也是通过这些东西来的。
我给大家念一下这个原子钟是怎么回事,你就会知道道理其实都一样。
“原子钟是伽利略摆钟的现代版本,尽管它和摆钟一样,也是通过计数振动次数来计时,但它追踪的并不是摆锤的来回摆动,而是计数铯原子在其两种能态间来回转换时的振动次数,这种能态转换每秒钟要进行9,192,631,770(约91亿)次。虽然原子钟和摆钟的运行机制不同,但原理是一样的,即重复性的往复运动可以用来计时。
伽利略通过钟摆实验帮我们揭示了时间和运动之间的关系,除此之外,那时候他们都想解决的一个问题就是经度测试的问题。你知道航海的时候,纬度容易发现,只要你看太阳的位置,你就知道自己在什么纬度上;但经度很难发现,经度无法测算,所以会出现很多触礁、跑偏的情况,甚至出现事故。所以当时荷兰、英国这些航海大国就发起悬赏,谁能够解决经度测试的问题,就给谁巨额的奖金。
一直到18世纪中期,英国一个叫哈里森的人,才用伽利略的原理解决了经度测量的问题。当时的奖金多少钱你知道吗?2万英镑,极高额的一个奖励,因为他帮航海解决了几乎所有的安全问题。既能测量经度,又能够测量纬度,人们就知道船在什么地方了。
那接下来,另外一位研究运动的高手就是开普勒。过去亚里士多德认为,所有的行星都在正圆轨道上运行。因为正圆是美好的,天上的东西肯定都是美好的,所以运行轨道就是正圆轨道。但是开普勒说,行星是在椭圆轨道上运行的。在椭圆轨道上运行,就意味着它有变速运动。
这些无法彻底通过计算来解决,原因就是当时的人掌握的数学工具不够,需要等到牛顿出现。因为椭圆的运动是完全变动的,形状是变动的、速度是变动的,我们过去的数学工具无法解决这个问题,所以就要等到微积分的真正诞生才行。
有一个有意思的事是,伽利略和开普勒之间经常互相通信,他们俩是朋友。大家都不明白,为什么17世纪会是人类的一个分界线,人们从17世纪开始走入科学,17世纪以前都是宗教。原因就是17世纪有了邮政系统,邮政系统使得像伽利略、开普勒和牛顿这些人可以互相写信来矫正自己的思想,所以才会有了同行的评议、有了共识,后来会诞生了英国皇家学会。所以人类世界的种种变化背后,都有它的技术原因。