我们经常都会听到一句话就是“不要把鸡蛋放在一个篮子里”,其中的忠告就是,没有十足的把握,投资不能指投资一样东西,这样风险会很大,这里投一点,那里投一点,东边不亮西边亮嘛,文艺一点,就是我们经常说的投资组合。那这样的道理有科学依据吗?
投资组合理论是一个叫马科维茨的美国人发现的,并且在1990年获得诺贝尔经济学奖。投资组合是指你按照一定比例把资金投在不同的证券上,这个道理在现在看起来很简单是不是,,从某种意义上来说,投资组合理论为基金的分散化和专业化提供了监视的理论基础,真正意义上的现代基金业也就是从这个理论开始起步的,商学院的金融系也起源于这个理论,因为在它之前,商学院的金融教学都是案例型,经验型的,只有从这里开始,商学院的金融专业才真正地进入了专业化和量化的时代。
现在我们明白了投资组合的概念,那为什么说投资组合是可以降低风险的呢 ?
先说一个金融学教材中一个经典的例子,假设你现在有一笔钱投资,目前面临两只股票,受益于都是8%,方差(金融学里面衡量风险的指标)都是25%,这两个股票之间的相关系数为0.3,换句话说,也就是一只股票上涨或者下跌1元钱,另外一只会跟着上涨或者下跌0.3元,现在你面临的抉择是,讲所有的钱全部放在一直股票上,还是做一个股票组合,在两只股票上各放50%的资金?很多人凭直觉会觉得,既然收益率和防线都一模一样,那全部放在一只股票或者各放50%,结果不是都一样吗?答案却是,把资金放在一只股票,或者两只股票各方50%,收益率确实还是8%,但是后者的方差下降到16.25%,换句话说,用投资组合的风险,比单投一个股票的风险下降了35%左右,好了,我们现在继续把这个投资组合里面的股票数目增加下去,放4只,5只,6只股票,你会发现一个特别有意思的现象,随着股票数目的增加,你的这个投资组合的风险呈现出单调下降的一个趋势,当股票数目增加到100的时候,风险一已经下降到7.68%,我们继续怎加股票的数目,却发现接下来风险分散就会微乎其微了。对数学感兴趣的同学看下面图片的公式。
不懂数学,也不影响你对这个问题的理解,你可以想象,物理世界里面的分子,它们的运动方向和力度都是不一致的,有的往这里走,有的往那里走,假设只有两个分子,它们以0.3的相关系数在运动,那么其中有一部分的力量就会被抵消掉,当很多很多个分子加入这个运动的时候,中间更多的力量被抵消掉,然后逐渐呈现出一个稳定的形态,这就是为数目你会看到,随着投资组合的股票数目的增多,风险会逐渐降低,因为不同的股票,它们的波动时不一致的,它们中间的不一致就讲部分的波动给抵消掉了,这就是分散化的底层逻辑。
插图要放最后才能显示在小程序页表面吗?