多因素方差分析_规模/位置对销量的影响

2019/2/24-星期日-阴雨天

今天做一下关于多因素方差分析的案例。

一、问题与数据

现希望对超市销售的某种商品进行调查,考察其销售额是否受到货架摆放位置的影响,以及超市规模是否也会有所影响,甚至两者间是否存在交互作用。超市的大小(三水平)、摆放位置(四水平)各随机选取了两个点,记录其一周内该货物的销量。

图1:同一周内货物的销售数据

数据链接:https://pan.baidu.com/s/1IKwLlmCoM0_ssv6_uJDYVg

图2

基于问题的思考:显然这个问题的因变量是销售额,分类变量有①超市规模,②货物摆放位置。

所以模型为:y_{ijk}=\mu +\alpha _{i}+\beta _{i}+\gamma _{ij}+\varepsilon _{ijk};其中\alpha _{i}\beta _{i}分别表示超市规模i水平和货物摆放位置j水平的附加效应。而\gamma _{ij} 则为两者的交互作用项。

二、spss分析方法

1、选择Analyze→General Linear Model→Univariate (假设数据服从正态分布)

图1
图2
图3

由图3的结果可知,无法得到方差齐性检验的分析结果。这是因为两个因素的各水平交叉,一共会形成12个单元格,这里就是要检验这12个单元格的方差是否齐。但是如果要再考虑交互作用的模型中进行方差齐性检验,每个单元格内至少要有3个元素(数据点)才可以。因此这里无法进行分析结果。所以可见在多因素时方差齐性检验往往价值不大。

解读主体间效应检验这个图表:

①修正模型:其假设为模型中所有的影响作用均无作用(即摆放位置、超市规模、两者的交叉作用均对销量没有影响),P值(.sig)远小于0.05,因此模型具有统计学意义,以上所提及的内容中至少有一个是有差异的。

②截距:其假设为模型中的常数项等于0,P值远小于0.05,因此拒绝原假设。显然它的分析无意义,忽略即可。

③分别对超市规模、摆放位置的效应进行检验,其假设为所有\alpha _{i}均为0,所有\beta _{i}均为0。P值远小于0.05,因此拒绝原假设,即\alpha _{i}\beta_{i} 中至少有一个不为0。

④size*position,对超市规模和摆放位置的交互作用进行检验,可见P值为0.663>0.05,无统计学意义。

由上可知可以忽略两个因素之间的交互因素。可进行以下优化。

图4
图5

下面对超市规模、摆放位置进行具体水平间差异使用S-N-K法进行两两比较。操作如下:

图6
图7

从图7可以看出超市规模越大,相应的销量就越大。

图8

从图8可以看出4种摆放位置对销量有影响,C位置的销量最大,其次是B位置,A和D位置的销量最小。

三、深入探究

①边际均数与轮廓图

边际均数是指基于现有模型,当控制所有其他因素作用时,根据样本情况计算出用于比较各水平的均数估计值。

轮廓图就是一种线图

图9
图10
图11

从上图可以直观看出原始样本均数差异。

联合轮廓图就是含有多个变量的轮廓图。

图12:无因子交互作用
图13:有因子交互作用

为了对模型的拟合效果进行观察可以使用残差图,残差图实际上就是一个散点图矩阵,由因变量实测值,预测值和标准化残差构成。

【选项】中勾选残差图

图14:残差图

如果模型拟合效果很好,则预测值和实测值应当有明显的相关,呈现出较好的直线趋势。

拟和劣度检验

拟和劣度检验就是用当前模型和全模型效果相比的检验。如果无效假设被拒绝,说明模型不能充分刻画因变量,自变量之间的关系。P值等于0.663正好等于全模型中对交互项的检验P值。但在交互项多于一个的时候,拟和优势的检验优势就比较明显。

图15:失拟检验
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 224,815评论 6 522
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,251评论 3 402
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 171,999评论 0 366
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 60,996评论 1 300
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 69,993评论 6 400
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,477评论 1 314
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,848评论 3 428
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 40,823评论 0 279
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,361评论 1 324
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,401评论 3 346
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,518评论 1 354
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,119评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,850评论 3 338
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,292评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,424评论 1 275
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,072评论 3 381
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,588评论 2 365

推荐阅读更多精彩内容