Exercise_11:Chaotic Tumbling of Hyperion

Abstract

In this exercise, the motion of Hyperion will be discussed according to the instruction of Problem4.21.Hyperion, also known as Saturn VII,is distinguished by its irregular shape,  chaotic rotation, and unexplained dumbball-like appearance.My work on Hyperion is just qualitative, aiming to show its chaotic during its orbit to Saturn.

Background

The model has been simplified as figure 4.16 in textbook.There are two forces acting on each of the masses, the force of the gravity from Saturn and the force from the rod. Since we are interested in the motion about the center of mass, the force from the rod does not contribute. The gravitational force on m1 can be written as


whereMsat is the mass of Saturn, r1 is the distance from Saturn to m1, i and j are unit vectors in the x and y directions. The coordinates of the center of mass are (xc,yc), so that (x1-xc)i+(y1-yc)j is the vector from the center of mass  to m1. The torque on m1 is then

with a similar expression for r2. The total torque on the moon is just r1+r2 and this is related to the time derivative of omega by:

Hence,we have

rc is the distance from the center of mass to Saturn.


The Main Body

First of all, if we restrain theta in

For point c(the center of mass), if it move in a circle, we can see:

If its trajectory is ellipse, we have:

It is obviously that as for circular orbit, the motion is not chaotic,however, as for ellipse orbit, the result is very complicated and erratic, and appears to be chaotic.The abrupt vertical jumps in theta are due to our restriction that theta is -pi to pi.

So we next remove this restriction, for circular orbit, we have:

Futher more, we set two different initial conditions with theta(0)=0 and other on theta(0)=0.01, in all case the omega is zero.

we still find a regular wave.

In the following step, with no doubt that we change circular orbit to ellipse orbit ,we have:

Compared to what I have done in circular orbit, this time chaos appear.Also, as time goes by, we can see dtheta have a rapid growth. To be more specific, if we contrast this to figures with the -pi to pi restriction, we gain tendency with more details.On the other hand, we can now get a clearer  realization that one essential feature of a chaotic system is an extreme sensitivity to initial conditions.

code 


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容

  • 说起baby,貌似有很大一部分人不喜欢她,,, 而说起她演的作品,《大汉情缘之云中歌》,说实话,小编实在没有勇气继...
    段子手万千阅读 274评论 0 0
  • 每一位演奏者和聆听着得到更好的声色体验是珠江人的使命 【调律知识篇之一】了解钢琴构造之音锤 2016-02-25 ...
    ZMDPR阅读 2,158评论 0 0
  • 感觉生活越来越没趣了,每天无所事事,浑浑噩噩,有可能那天死在家里也没有人知道。 大学毕业,就要面临着找工作,一想到...
    HJSAK阅读 209评论 0 1
  • Homogeneous Coordinate(齐次坐标) 暂时还看不出有什么特别的作用,应该是解决了矩阵乘以向量时...
    满堂风来阅读 508评论 0 0
  • 看到下面这个图片你想到了什么?嗯!对了,就是花花。 宁夏大学校门口有个开在楼梯上的花店,她有个温馨浪漫的名字:“從...
    青苹果秀秀阅读 349评论 0 0